ﻻ يوجد ملخص باللغة العربية
IP Anycast is used for services such as DNS and Content Delivery Networks to provide the capacity to handle Distributed Denial-of-Service (DDoS) attacks. During a DDoS attack service operators may wish to redistribute traffic between anycast sites to take advantage of sites with unused or greater capacity. Depending on site traffic and attack size, operators may instead choose to concentrate attackers in a few sites to preserve operation in others. Previously service operators have taken these actions during attacks, but how to do so has not been described publicly. This paper meets that need, describing methods to use BGP to shift traffic when under DDoS that can build a response playbook. Operators can use this playbook, with our new method to estimate attack size, to respond to attacks. We also explore constraints on responses seen in an anycast deployment.
Distributed Denial-of-Service (DDoS) attacks are a major problem in the Internet today. In one form of a DDoS attack, a large number of compromised hosts send unwanted traffic to the victim, thus exhausting the resources of the victim and preventing
A quantum network promises to enable long distance quantum communication, and assemble small quantum devices into a large quantum computing cluster. Each network node can thereby be seen as a small few qubit quantum computer. Qubits can be sent over
Opportunistic Routing (OR) is a novel routing technique for wireless mesh networks that exploits the broadcast nature of the wireless medium. OR combines frames from multiple receivers and therefore creates a form of Spatial Diversity, called MAC Div
Multicasting is effective when its group members are sparse and the speed is low. On the other hand, broadcasting is effective when the group members dense and the speed are high. Since mobile ad hoc networks are highly dynamic in nature, either of t
Machine-learning-based anomaly detection (ML-based AD) has been successful at detecting DDoS events in the lab. However published evaluations of ML-based AD have used only limited data and provided minimal insight into why it works. To address limite