ترغب بنشر مسار تعليمي؟ اضغط هنا

Shortcuts to quantum network routing

94   0   0.0 ( 0 )
 نشر من قبل Stephanie Wehner
 تاريخ النشر 2016
والبحث باللغة English




اسأل ChatGPT حول البحث

A quantum network promises to enable long distance quantum communication, and assemble small quantum devices into a large quantum computing cluster. Each network node can thereby be seen as a small few qubit quantum computer. Qubits can be sent over direct physical links connecting nearby quantum nodes, or by means of teleportation over pre-established entanglement amongst distant network nodes. Such pre-shared entanglement effectively forms a shortcut - a virtual quantum link - which can be used exactly once. Here, we present an abstraction of a quantum network that allows ideas from computer science to be applied to the problem of routing qubits, and manage entanglement in the network. Specifically, we consider a scenario in which each quantum network node can create EPR pairs with its immediate neighbours over a physical connection, and perform entanglement swapping operations in order to create long distance virtual quantum links. We proceed to discuss the features unique to quantum networks, which call for the development of new routing techniques. As an example, we present two simple hierarchical routing schemes for a quantum network of N nodes for a ring and sphere topology. For these topologies we present efficient routing algorithms requiring O(log N) qubits to be stored at each network node, O(polylog N) time and space to perform routing decisions, and O(log N) timesteps to replenish the virtual quantum links in a model of entanglement generation.



قيم البحث

اقرأ أيضاً

156 - Vishnu B , Abhishek Sinha 2021
This paper considers the problem of secure packet routing at the maximum achievable rate in a Quantum key distribution (QKD) network. Assume that a QKD protocol generates symmetric private keys for secure communication over each link in a multi-hop n etwork. The quantum key generation process, which is affected by noise, is assumed to be modeled by a stochastic counting process. Packets are first encrypted with the available quantum keys for each hop and then transmitted on a point-to-point basis over the communication links. A fundamental problem that arises in this setting is to design a secure and capacity-achieving routing policy that accounts for the time-varying availability of the quantum keys for encryption and finite link capacities for transmission. In this paper, by combining the QKD protocol with the Universal Max Weight (UMW) routing policy, we design a new secure throughput-optimal routing policy, called Tandem Queue Decomposition (TQD). TQD solves the problem of secure routing efficiently for a wide class of traffic, including unicast, broadcast, and multicast. One of our main contributions in this paper is to show that the problem can be reduced to the usual generalized network flow problem on a transformed network without the key availability constraints. Simulation results show that the proposed policy incurs a substantially smaller delay as compared to the state-of-the-art routing and key management policies. The proof of throughput-optimality of the proposed policy makes use of the Lyapunov stability theory along with a careful treatment of the key-storage dynamics.
We demonstrate how the 5G network slicing model can be extended to address data security requirements. In this work we demonstrate two different slice configurations, with different encryption requirements, representing two diverse use-cases for 5G n etworking: namely, an enterprise application hosted at a metro network site, and a content delivery network. We create a modified software-defined networking (SDN) orchestrator which calculates and provisions network slices according to the requirements, including encryption backed by quantum key distribution (QKD), or other methods. Slices are automatically provisioned by SDN orchestration of network resources, allowing selection of encrypted links as appropriate, including those which use standard Diffie-Hellman key exchange, QKD and quantum-resistant algorithms (QRAs), as well as no encryption at all. We show that the set-up and tear-down times of the network slices takes of the order of 1-2 minutes, which is an order of magnitude improvement over manually provisioning a link today.
Sensors used in applications such as agriculture, weather, etc., monitoring physical parameters like soil moisture, temperature, humidity, will have to sustain their battery power for long intervals of time. In order to accomplish this, parameter whi ch assists in reducing the consumption of power from battery need to be attended to. One of the factors affecting the consumption of energy is transmit and receive power. This energy consumption can be reduced by avoiding unnecessary transmission and reception. Efficient routing techniques and incorporating aggregation whenever possible can save considerable amount of energy. Aggregation reduces repeated transmission of relative values and also reduces lot of computation at the base station. In this paper, the benefits of aggregation over direct transmission in saving the amount of energy consumed is discussed. Routing techniques which assist aggregation are incorporated. Aspects like transmission of average value of sensed data around an area of the network, minimum value in the whole of the network, triggering of event when there is low battery are assimilated.
284 - Yue Ban , Xi Chen , 2018
Rapid and efficient preparation, manipulation and transfer of quantum states through an array of quantum dots (QDs) is a demanding requisite task for quantum information processing and quantum computation in solid-state physics. Conventional adiabati c protocols, as coherent transfer by adiabatic passage (CTAP) and its variations, provide slow transfer prone to decoherence, which could lower the fidelity to some extent. To achieve the robustness against decoherence, we propose a protocol of speeding up the adiabatic charge transfer in multi-QD systems, sharing the concept of Shortcuts to Adiabaticity (STA). We first apply the STA techniques, including the counterdiabatic driving and inverse engineering, to speed up the direct (long range) transfer between edge dots in triple QDs. Then, we extend our analysis to a multi-dot system. We show how by implementing the modified pulses, fast adiabatic-like charge transport between the outer dots can be eventually achieved without populating intermediate dots. We discuss as well the dependence of the transfer fidelity on the operation time in the presence of dephasing. The proposed protocols for accelerating adiabatic charge transfer directly between the outer dots in a QD array offers a robust mechanism for quantum information processing, by minimizing decoherence and relaxation processes.
We study a problem of fundamental importance to ICNs, namely, minimizing routing costs by jointly optimizing caching and routing decisions over an arbitrary network topology. We consider both source routing and hop-by-hop routing settings. The respec tive offline problems are NP-hard. Nevertheless, we show that there exist polynomial time approximation algorithms producing solutions within a constant approximation from the optimal. We also produce distributed, adaptive algorithms with the same approximation guarantees. We simulate our adaptive algorithms over a broad array of different topologies. Our algorithms reduce routing costs by several orders of magnitude compared to prior art, including algorithms optimizing caching under fixed routing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا