ﻻ يوجد ملخص باللغة العربية
A comprehensive exploration of Uranus and Neptune is essential to understand the formation and evolution of the giant planets, in particular, solar system, in general, and, by extension, a vast population of exoplanets. Though core accretion is generally favored over gravitational instability as the model of the formation of the gas giants, Jupiter and Saturn, observational constraints are presently lacking to make a compelling case for either in the case of the icy giants. Abundances of the heavy elements with mass exceeding that of helium provide the best constraints to the formation and migration models. For Uranus and Neptune, only the C elemental abundance has been determined from methane measurements, but should be considered as a lower limit considering methane is a condensible gas in the icy giants. Well-mixed water, ammonia and hydrogen sulfide to determine O, N and S elemental abundances, respectively, are too deep to measure by any observation technique. However, a precise measurement of the noble gases, He, Ne, Ar, Kr and Xe, together with their isotopic ratios, would circumvent the need for determining the above elements. Only entry probes are capable of measuring the noble gases, but those measurements can be done at relatively shallow pressure levels of 5-10 bars. Complementary observations from orbiter, especially the interior (gravity and magnetic field) and depth profiles of water and ammonia, would greatly enhance the data set for constraining the formation models. No new technology is required to carry out an orbiter-probe mission to either Uranus or Neptune in the next decade.
The distant ice giants of the Solar System, Uranus and Neptune, have only been visited by one space mission, Voyager 2. The current knowledge on their composition remains very limited despite some recent advances. A better characterization of their c
In this white paper, we present a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan exosphere to the deep interior, and we detail which instrumentation and mission scenarios should be u
Satellites of giant planets thought to form in gaseous circumplanetary disks (CPDs) during the late planet-formation phase, but it was unknown so far whether smaller mass planets, such as the ice giants could form such disks, thus moons there. We com
Remote sensing observations suffer significant limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. This impacts our knowledge of the formation of these planets and the physics of their atmospheres
Remote sensing observations meet some limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. A remarkable example of the superiority of in situ probe measurements is illustrated by the exploration of