ترغب بنشر مسار تعليمي؟ اضغط هنا

Science goals and mission concepts for a future orbital and in situ exploration of Titan

101   0   0.0 ( 0 )
 نشر من قبل Sebastien Rodriguez
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this white paper, we present a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan exosphere to the deep interior, and we detail which instrumentation and mission scenarios should be used to answer them. Our intention is to formulate the science goals for the next generation of planetary missions to Titan in order to prepare the future exploration of the moon. The ESA L-class mission concept that we propose is composed of a Titan orbiter and at least an in situ element (lake lander and/or drone(s)).

قيم البحث

اقرأ أيضاً

55 - Jeff Moore 2020
The outer solar system has a diverse range of objects, holding important clues about the formation and evolution of our solar system, the emergence and current distribution of life, and the physical processes controlling both our own and exoplanetary systems. This White Paper summarizes the Outer Planets Analysis Groups (OPAGs) priorities in the Decadal Survey. Taking into account the science to be achieved, the timing of solar system events, technological readiness, and programmatic factors, our mission recommendations are as follows. OPAG strongly endorses the completion and launch of the Europa Clipper mission, maintaining the science capabilities identified upon its selection, and a Juno extended mission at Jupiter. For the decade 2023-2032, OPAG endorses a new start for two directed missions: first, a mission to Neptune or Uranus with atmospheric probe(s), and second, a life detection Ocean World mission, along with additional technological development for life detection. A Neptune mission is preferred because, while the Neptune and Uranus systems provide equally compelling opportunities, Triton is a higher priority ocean world target than the Uranian satellites. The mission to Neptune or Uranus should fly first because a delay threatens key science objectives, and additional technological development is required for a directed life detection mission. Along with missions, we emphasize the necessity of maintaining a healthy Research and Analysis (R&A) program as well as a robust Earth-based observing program. OPAGs top two technology priorities are rapid development of a next-generation radioisotope power source for a mission to Neptune or Uranus, and development of key life detection technologies in support of an Ocean World mission. Finally, fostering an interdisciplinary, diverse, equitable, inclusive, and accessible community is of top importance to the OPAG community.
Space-based transit missions such as Kepler and TESS have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield bulk densities and orbital properties. While most Kepler host stars are too faint for detailed follow-up observations, TESS is detecting planets orbiting nearby bright stars that are more amenable to RV characterization. Here we introduce the TESS-Keck Survey (TKS), an RV program using ~100 nights on Keck/HIRES to study exoplanets identified by TESS. The primary survey aims are investigating the link between stellar properties and the compositions of small planets; studying how the diversity of system architectures depends on dynamical configurations or planet multiplicity; identifying prime candidates for atmospheric studies with JWST; and understanding the role of stellar evolution in shaping planetary systems. We present a fully-automated target selection algorithm, which yielded 103 planets in 86 systems for the final TKS sample. Most TKS hosts are inactive, solar-like, main-sequence stars (4500 K < Teff < 6000 K) at a wide range of metallicities. The selected TKS sample contains 71 small planets (Rp < 4 Re), 11 systems with multiple transiting candidates, 6 sub-day period planets and 3 planets that are in or near the habitable zone of their host star. The target selection described here will facilitate the comparison of measured planet masses, densities, and eccentricities to predictions from planet population models. Our target selection software is publicly available (at https://github.com/ashleychontos/sort-a-survey) and can be adapted for any survey which requires a balance of multiple science interests within a given telescope allocation.
New and unique opportunities now exist to look for technosignatures (TS) beyond traditional SETI radio searches, motivated by tremendous advances in exoplanet science and observing capabilities in recent years. Space agencies, both public and private , may be particularly interested in learning about the communitys views as to the optimal methods for future TS searches with current or forthcoming technology. This report is an effort in that direction. We put forward a set of possible mission concepts designed to search for TS, although the data supplied by such missions would also benefit other areas of astrophysics. We introduce a novel framework to analyze a broad diversity of TS in a quantitative manner. This framework is based on the concept of ichnoscale, which is a new parameter related to the scale of a TS cosmic footprint, together with the number of potential targets where such TS can be searched for, and whether or not it is continuous in time.
96 - L. Amati , P.T. OBrien , D. Gotz 2021
THESEUS, one of the two space mission concepts being studied by ESA as candidates for next M5 mission within its Comsic Vision programme, aims at fully exploiting Gamma-Ray Bursts (GRB) to solve key questions about the early Universe, as well as beco ming a cornerstone of multi-messenger and time-domain astrophysics. By investigating the first billion years of the Universe through high-redshift GRBs, THESEUS will shed light on the main open issues in modern cosmology, such as the population of primordial low mass and luminosity galaxies, sources and evolution of cosmic re-ionization, SFR and metallicity evolution up to the cosmic dawn and across Pop-III stars. At the same time, the mission will provide a substantial advancement of multi-messenger and time-domain astrophysics by enabling the identification, accurate localisation and study of electromagnetic counterparts to sources of gravitational waves and neutrinos, which will be routinely detected in the late 20s and early 30s by the second and third generation Gravitational Wave (GW) interferometers and future neutrino detectors, as well as of all kinds of GRBs and most classes of other X/gamma-ray transient sources. In all these cases, THESEUS will provide great synergies with future large observing facilities in the multi-messenger domain. A Guest Observer programme, comprising Target of Opportunity (ToO) observations, will expand the science return of the mission, to include, e.g., solar system minor bodies, exoplanets, and AGN.
The distant ice giants of the Solar System, Uranus and Neptune, have only been visited by one space mission, Voyager 2. The current knowledge on their composition remains very limited despite some recent advances. A better characterization of their c omposition is however essential to constrain their formation and evolution, as a significant fraction of their mass is made of heavy elements, contrary to the gas giants Jupiter and Saturn. An in situ probe like Galileo would provide us with invaluable direct ground-truth composition measurements. However, some of the condensibles will remain out of the grasp of a shallow probe. While additional constraints could be obtained from a complementary orbiter, thermochemistry and diffusion modeling can further help us to increase the science return of an in situ probe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا