ﻻ يوجد ملخص باللغة العربية
In this white paper, we present a cross-section of important scientific questions that remain partially or completely unanswered, ranging from Titan exosphere to the deep interior, and we detail which instrumentation and mission scenarios should be used to answer them. Our intention is to formulate the science goals for the next generation of planetary missions to Titan in order to prepare the future exploration of the moon. The ESA L-class mission concept that we propose is composed of a Titan orbiter and at least an in situ element (lake lander and/or drone(s)).
The outer solar system has a diverse range of objects, holding important clues about the formation and evolution of our solar system, the emergence and current distribution of life, and the physical processes controlling both our own and exoplanetary
Space-based transit missions such as Kepler and TESS have demonstrated that planets are ubiquitous. However, the success of these missions heavily depends on ground-based radial velocity (RV) surveys, which combined with transit photometry can yield
New and unique opportunities now exist to look for technosignatures (TS) beyond traditional SETI radio searches, motivated by tremendous advances in exoplanet science and observing capabilities in recent years. Space agencies, both public and private
THESEUS, one of the two space mission concepts being studied by ESA as candidates for next M5 mission within its Comsic Vision programme, aims at fully exploiting Gamma-Ray Bursts (GRB) to solve key questions about the early Universe, as well as beco
The distant ice giants of the Solar System, Uranus and Neptune, have only been visited by one space mission, Voyager 2. The current knowledge on their composition remains very limited despite some recent advances. A better characterization of their c