ترغب بنشر مسار تعليمي؟ اضغط هنا

When Will Generative Adversarial Imitation Learning Algorithms Attain Global Convergence

95   0   0.0 ( 0 )
 نشر من قبل Ziwei Guan
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Generative adversarial imitation learning (GAIL) is a popular inverse reinforcement learning approach for jointly optimizing policy and reward from expert trajectories. A primary question about GAIL is whether applying a certain policy gradient algorithm to GAIL attains a global minimizer (i.e., yields the expert policy), for which existing understanding is very limited. Such global convergence has been shown only for the linear (or linear-type) MDP and linear (or linearizable) reward. In this paper, we study GAIL under general MDP and for nonlinear reward function classes (as long as the objective function is strongly concave with respect to the reward parameter). We characterize the global convergence with a sublinear rate for a broad range of commonly used policy gradient algorithms, all of which are implemented in an alternating manner with stochastic gradient ascent for reward update, including projected policy gradient (PPG)-GAIL, Frank-Wolfe policy gradient (FWPG)-GAIL, trust region policy optimization (TRPO)-GAIL and natural policy gradient (NPG)-GAIL. This is the first systematic theoretical study of GAIL for global convergence.

قيم البحث

اقرأ أيضاً

Generative Adversarial Imitation Learning (GAIL) is a powerful and practical approach for learning sequential decision-making policies. Different from Reinforcement Learning (RL), GAIL takes advantage of demonstration data by experts (e.g., human), a nd learns both the policy and reward function of the unknown environment. Despite the significant empirical progresses, the theory behind GAIL is still largely unknown. The major difficulty comes from the underlying temporal dependency of the demonstration data and the minimax computational formulation of GAIL without convex-concave structure. To bridge such a gap between theory and practice, this paper investigates the theoretical properties of GAIL. Specifically, we show: (1) For GAIL with general reward parameterization, the generalization can be guaranteed as long as the class of the reward functions is properly controlled; (2) For GAIL, where the reward is parameterized as a reproducing kernel function, GAIL can be efficiently solved by stochastic first order optimization algorithms, which attain sublinear convergence to a stationary solution. To the best of our knowledge, these are the first results on statistical and computational guarantees of imitation learning with reward/policy function approximation. Numerical experiments are provided to support our analysis.
This paper explores a simple regularizer for reinforcement learning by proposing Generative Adversarial Self-Imitation Learning (GASIL), which encourages the agent to imitate past good trajectories via generative adversarial imitation learning framew ork. Instead of directly maximizing rewards, GASIL focuses on reproducing past good trajectories, which can potentially make long-term credit assignment easier when rewards are sparse and delayed. GASIL can be easily combined with any policy gradient objective by using GASIL as a learned shaped reward function. Our experimental results show that GASIL improves the performance of proximal policy optimization on 2D Point Mass and MuJoCo environments with delayed reward and stochastic dynamics.
Recently, an abundant amount of urban vehicle trajectory data has been collected in road networks. Many studies have used machine learning algorithms to analyze patterns in vehicle trajectories to predict location sequences of individual travelers. U nlike the previous studies that used a discriminative modeling approach, this research suggests a generative modeling approach to learn the underlying distributions of urban vehicle trajectory data. A generative model for urban vehicle trajectories can better generalize from training data by learning the underlying distribution of the training data and, thus, produce synthetic vehicle trajectories similar to real vehicle trajectories with limited observations. Synthetic trajectories can provide solutions to data sparsity or data privacy issues in using location data. This research proposesTrajGAIL, a generative adversarial imitation learning framework for the urban vehicle trajectory generation. In TrajGAIL, learning location sequences in observed trajectories is formulated as an imitation learning problem in a partially observable Markov decision process. The model is trained by the generative adversarial framework, which uses the reward function from the adversarial discriminator. The model is tested with both simulation and real-world datasets, and the results show that the proposed model obtained significant performance gains compared to existing models in sequence modeling.
We study risk-sensitive imitation learning where the agents goal is to perform at least as well as the expert in terms of a risk profile. We first formulate our risk-sensitive imitation learning setting. We consider the generative adversarial approac h to imitation learning (GAIL) and derive an optimization problem for our formulation, which we call it risk-sensitive GAIL (RS-GAIL). We then derive two differe
Imitation learning (IL) aims to learn a policy from expert demonstrations that minimizes the discrepancy between the learner and expert behaviors. Various imitation learning algorithms have been proposed with different pre-determined divergences to q uantify the discrepancy. This naturally gives rise to the following question: Given a set of expert demonstrations, which divergence can recover the expert policy more accurately with higher data efficiency? In this work, we propose $f$-GAIL, a new generative adversarial imitation learning (GAIL) model, that automatically learns a discrepancy measure from the $f$-divergence family as well as a policy capable of producing expert-like behaviors. Compared with IL baselines with various predefined divergence measures, $f$-GAIL learns better policies with higher data efficiency in six physics-based control tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا