ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct evaluation of measurement uncertainties by feedback compensation of decoherence

47   0   0.0 ( 0 )
 نشر من قبل Holger F. Hofmann
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Holger F. Hofmann




اسأل ChatGPT حول البحث

It is difficult to evaluate the precision of quantum measurements because it is not possible to conduct a second reference measurement on the same physical system to compare the measurement outcome with a more accurate value of the measured quantity. Here, I show that a direct evaluation of measurement uncertainties is possible when the measurement outcomes are used to compensate the small amount of decoherence induced in a probe qubit by carefully controlled interactions with the system. Since the original uncertainty of the target observable causes fluctuating phase shifts in the probe qubit, any additional information obtained about the target observable can be used to compensate a part of the decoherence by applying a conditional phase shift to the reference qubit. The magnitude of this negative feedback corresponds to an estimate of the target observable, and the uncompensated decoherence defines the uncertainty of that estimate. The results of the analysis show that the uncertainties of the estimates are given by the uncertainties introduced by Ozawa in Phys. Rev. A 67, 042105 (2003) and the optimal estimates are given by the weak values associated with the different measurement outcomes. Feedback compensation of decoherence therefore demonstrates the empirical validity of definitions of errors and estimates that combine the initial information of the input state with the additional information provided by each measurement outcome.

قيم البحث

اقرأ أيضاً

Violations of a Bell inequality are reported for an experiment where one of two entangled qubits is stored in a collective atomic memory for a user-defined time delay. The atomic qubit is found to preserve the violation of a Bell inequality for stora ge times up to 21 microseconds, 700 times longer than the duration of the excitation pulse that creates the entanglement. To address the question of the security of entanglement-based cryptography implemented with this system, an investigation of the Bell violation as a function of the cross-correlation between the generated nonclassical fields is reported, with saturation of the violation close to the maximum value allowed by quantum mechanics.
The no-knowledge quantum feedback was proposed by Szigeti et al., Phys. Rev. Lett. 113, 020407 (2014), as a measurement-based feedback protocol for decoherence suppression for an open quantum system. By continuously measuring environmental noises and feeding back controls on the system, the protocol can completely reverse the measurement backaction and therefore suppress the systems decoherence. However, the complete decoherence cancellation was shown only for the instantaneous feedback, which is impractical in real experiments. Therefore, in this work, we generalize the original work and investigate how the decoherence suppression can be degraded with unavoidable delay times, by analyzing non-Markovian average dynamics. We present analytical expressions for the average dynamics and numerically analyze the effects of the delayed feedback for a coherently driven two-level system, coupled to a bosonic bath via a Hermitian coupling operator. We also find that, when the qubits unitary dynamics does not commute with the measurement and feedback controls, the decoherence rate can be either suppressed or amplified, depending on the delay time.
82 - K. Banaszek , C. Radzewicz , 1999
We report a direct measurement of the Wigner function characterizing the quantum state of a light mode. The experimental scheme is based on the representation of the Wigner function as an expectation value of a displaced photon number parity operator . This allowed us to scan the phase space point-by-point, and obtain the complete Wigner function without using any numerical reconstruction algorithms.
A multi-slit interference experiment, with which-way detectors, in the presence of environment induced decoherence, is theoretically analyzed. The effect of environment is modeled via a coupling to a bath of harmonic oscillators. Through an exact ana lysis, an expression for $mathcal{C}$, a recently introduced measure of coherence, of the particle at the detecting screen is obtained as a function of the parameters of the environment. It is argued that the effect of decoherence can be quantified using the measured coherence value which lies between zero and one. For the specific case of two slits, it is shown that the decoherence time can be obtained from the measured value of the coherence, $mathcal{C}$, thus providing a novel way to quantify the effect of decoherence via direct measurement of quantum coherence. This would be of significant value in many current studies that seek to exploit quantum superpositions for quantum information applications and scalable quantum computation.
111 - Xin Chen , Xiaoying Li , 2019
It is known that photon pairs generated from pulse-pumped spontaneous parametric processes can be described by independent temporal modes and form a multi-temporal mode entangled state. However, the exact form of the temporal modes is not known even though the joint spectral intensity of photon pairs can be measured by the method of stimulated emission tomography. In this paper, we describe a feedback-iteration method which, combined with the stimulated emission method, can give rise to the exact forms of the independent temporal modes for the temporally entangled photon pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا