ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrete Few-Shot Learning for Pan Privacy

321   0   0.0 ( 0 )
 نشر من قبل Roei Gelbhart
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present the first baseline results for the task of few-shot learning of discrete embedding vectors for image recognition. Few-shot learning is a highly researched task, commonly leveraged by recognition systems that are resource constrained to train on a small number of images per class. Few-shot systems typically store a continuous embedding vector of each class, posing a risk to privacy where system breaches or insider threats are a concern. Using discrete embedding vectors, we devise a simple cryptographic protocol, which uses one-way hash functions in order to build recognition systems that do not store their users embedding vectors directly, thus providing the guarantee of computational pan privacy in a practical and wide-spread setting.

قيم البحث

اقرأ أيضاً

Zero-shot and few-shot learning aim to improve generalization to unseen concepts, which are promising in many realistic scenarios. Due to the lack of data in unseen domain, relation modeling between seen and unseen domains is vital for knowledge tran sfer in these tasks. Most existing methods capture seen-unseen relation implicitly via semantic embedding or feature generation, resulting in inadequate use of relation and some issues remain (e.g. domain shift). To tackle these challenges, we propose a Transferable Graph Generation (TGG) approach, in which the relation is modeled and utilized explicitly via graph generation. Specifically, our proposed TGG contains two main components: (1) Graph generation for relation modeling. An attention-based aggregate network and a relation kernel are proposed, which generate instance-level graph based on a class-level prototype graph and visual features. Proximity information aggregating is guided by a multi-head graph attention mechanism, where seen and unseen features synthesized by GAN are revised as node embeddings. The relation kernel further generates edges with GCN and graph kernel method, to capture instance-level topological structure while tackling data imbalance and noise. (2) Relation propagation for relation utilization. A dual relation propagation approach is proposed, where relations captured by the generated graph are separately propagated from the seen and unseen subgraphs. The two propagations learn from each other in a dual learning fashion, which performs as an adaptation way for mitigating domain shift. All components are jointly optimized with a meta-learning strategy, and our TGG acts as an end-to-end framework unifying conventional zero-shot, generalized zero-shot and few-shot learning. Extensive experiments demonstrate that it consistently surpasses existing methods of the above three fields by a significant margin.
Existing few-shot learning (FSL) methods assume that there exist sufficient training samples from source classes for knowledge transfer to target classes with few training samples. However, this assumption is often invalid, especially when it comes t o fine-grained recognition. In this work, we define a new FSL setting termed few-shot fewshot learning (FSFSL), under which both the source and target classes have limited training samples. To overcome the source class data scarcity problem, a natural option is to crawl images from the web with class names as search keywords. However, the crawled images are inevitably corrupted by large amount of noise (irrelevant images) and thus may harm the performance. To address this problem, we propose a graph convolutional network (GCN)-based label denoising (LDN) method to remove the irrelevant images. Further, with the cleaned web images as well as the original clean training images, we propose a GCN-based FSL method. For both the LDN and FSL tasks, a novel adaptive aggregation GCN (AdarGCN) model is proposed, which differs from existing GCN models in that adaptive aggregation is performed based on a multi-head multi-level aggregation module. With AdarGCN, how much and how far information carried by each graph node is propagated in the graph structure can be determined automatically, therefore alleviating the effects of both noisy and outlying training samples. Extensive experiments show the superior performance of our AdarGCN under both the new FSFSL and the conventional FSL settings.
387 - Ziyi Yang , Jun Shu , Yong Liang 2020
Current machine learning has made great progress on computer vision and many other fields attributed to the large amount of high-quality training samples, while it does not work very well on genomic data analysis, since they are notoriously known as small data. In our work, we focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients that can guide treatment decisions for a specific individual through training on small data. In fact, doctors and clinicians always address this problem by studying several interrelated clinical variables simultaneously. We attempt to simulate such clinical perspective, and introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks and transfer it to help address new tasks. Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification. Observing that gene expression data have specifically high dimensionality and high noise properties compared with image data, we proposed a new extension of it by appending two modules to address these issues. Concretely, we append a feature selection layer to automatically filter out the disease-irrelated genes and incorporate a sample reweighting strategy to adaptively remove noisy data, and meanwhile the extended model is capable of learning from a limited number of training examples and generalize well. Simulations and real gene expression data experiments substantiate the superiority of the proposed method for predicting the subtypes of disease and identifying potential disease-related genes.
To recognize the unseen classes with only few samples, few-shot learning (FSL) uses prior knowledge learned from the seen classes. A major challenge for FSL is that the distribution of the unseen classes is different from that of those seen, resultin g in poor generalization even when a model is meta-trained on the seen classes. This class-difference-caused distribution shift can be considered as a special case of domain shift. In this paper, for the first time, we propose a domain adaptation prototypical network with attention (DAPNA) to explicitly tackle such a domain shift problem in a meta-learning framework. Specifically, armed with a set transformer based attention module, we construct each episode with two sub-episodes without class overlap on the seen classes to simulate the domain shift between the seen and unseen classes. To align the feature distributions of the two sub-episodes with limited training samples, a feature transfer network is employed together with a margin disparity discrepancy (MDD) loss. Importantly, theoretical analysis is provided to give the learning bound of our DAPNA. Extensive experiments show that our DAPNA outperforms the state-of-the-art FSL alternatives, often by significant margins.
We study many-class few-shot (MCFS) problem in both supervised learning and meta-learning settings. Compared to the well-studied many-class many-shot and few-class few-shot problems, the MCFS problem commonly occurs in practical applications but has been rarely studied in previous literature. It brings new challenges of distinguishing between many classes given only a few training samples per class. In this paper, we leverage the class hierarchy as a prior knowledge to train a coarse-to-fine classifier that can produce accurate predictions for MCFS problem in both settings. The propose model, memory-augmented hierarchical-classification network (MahiNet), performs coarse-to-fine classification where each coarse class can cover multiple fine classes. Since it is challenging to directly distinguish a variety of fine classes given few-shot data per class, MahiNet starts from learning a classifier over coarse-classes with more training data whose labels are much cheaper to obtain. The coarse classifier reduces the searching range over the fine classes and thus alleviates the challenges from many classes. On architecture, MahiNet firstly deploys a convolutional neural network (CNN) to extract features. It then integrates a memory-augmented attention module and a multi-layer perceptron (MLP) together to produce the probabilities over coarse and fine classes. While the MLP extends the linear classifier, the attention module extends the KNN classifier, both together targeting the few-shot problem. We design several training strategies of MahiNet for supervised learning and meta-learning. In addition, we propose two novel benchmark datasets mcfsImageNet and mcfsOmniglot specially designed for MCFS problem. In experiments, we show that MahiNet outperforms several state-of-the-art models on MCFS problems in both supervised learning and meta-learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا