ﻻ يوجد ملخص باللغة العربية
Predicting changes in sea ice cover is critical for shipping, ecosystem monitoring, and climate modeling. Current sea ice models, however, predict more ice than is observed in the Arctic, and less in the Antarctic. Improving the fit of these physics-based models to observations is challenging because the models are expensive to run, and therefore expensive to optimize. Here, we construct a machine learning surrogate that emulates the effect of changing model physics on forecasts of sea ice area from the Los Alamos Sea Ice Model (CICE). We use the surrogate model to investigate the sensitivity of CICE to changes in the parameters governing: ices ridging and albedo; snows albedo, aging, and thermal conductivity; the effect of meltwater on albedo; and the effect of ponds on albedo. We find that CICEs sensitivity to these model parameters differs between hemispheres. We propose that future sea ice modelers separate the snow conductivity and snow grain size distributions on a seasonal and inter-hemispheric basis, and we recommend optimal values of these parameters. This will make it possible to make models that fit observations of both Arctic and Antarctic sea ice more closely. These results demonstrate that important aspects of the behavior of a leading sea ice model can be captured by a relatively simple support vector regression surrogate model, and that this surrogate dramatically increases the ease of tuning the full simulation.
1) The annual cycle of atmospheric methane in southern high latitudes is extremely highly correlated with Antarctic sea ice extent. 2) The annual cycle of atmospheric methane in the Arctic is highly correlated with Antarctic or Arctic plus Antarctic
Accurately forecasting Arctic sea ice from subseasonal to seasonal scales has been a major scientific effort with fundamental challenges at play. In addition to physics-based earth system models, researchers have been applying multiple statistical an
Lagrangian data assimilation of complex nonlinear turbulent flows is an important but computationally challenging topic. In this article, an efficient data-driven statistically accurate reduced-order modeling algorithm is developed that significantly
Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simula
We use numerical climate simulations, paleoclimate data, and modern observations to study the effect of growing ice melt from Antarctica and Greenland. Meltwater tends to stabilize the ocean column, inducing amplifying feedbacks that increase subsurf