ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolving understanding of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level projections

57   0   0.0 ( 0 )
 نشر من قبل Robert E. Kopp
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (vs. 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.



قيم البحث

اقرأ أيضاً

The modern era of scientific global-mean sea-level rise (SLR) projections began in the early 1980s. In subsequent decades, understanding of driving processes has improved, and new methodologies have been developed. Nonetheless, despite more than 70 s tudies, future SLR remains deeply uncertain. To facilitate understanding of the historical development of SLR projections and contextualize current projections, we have compiled a comprehensive database of 21st century global SLR projections. Although central estimates of 21st century global-mean SLR have been relatively consistent, the range of projected SLR has varied greatly over time. Among studies providing multiple estimates, the range of upper projections shrank from 1.3 to 1.8 m during the 1980s to 0.6 to 0.9 m in 2007, before expanding again to 0.5 to 2.5 m since 2013. Upper projections of SLR from individual studies are generally higher than upper projections from the Intergovernmental Panel on Climate Change, potentially due to differing percentile bounds, or a pre-disposition of consensus-based approaches toward relatively conservative outcomes.
1) The annual cycle of atmospheric methane in southern high latitudes is extremely highly correlated with Antarctic sea ice extent. 2) The annual cycle of atmospheric methane in the Arctic is highly correlated with Antarctic or Arctic plus Antarctic sea ice extent. 3) We propose the global annual cycle of atmospheric methane is largely driven by Antarctic sea ice dynamics, with relatively stronger influence from other fluxes (probably the biota) in the Northern Hemisphere. 4) We propose degassing during sea ice freeze and temperature dependent solubility in the ocean dominate the annual methane cycle. 5) Results provide evidence that carbon cycle pathways, parameters and predictions must be reassessed.
High temporal resolution in--situ measurements of pancake ice drift are presented, from a pair of buoys deployed on floes in the Antarctic marginal ice zone during the winter sea ice expansion, over nine days in which the region was impacted by four polar cyclones. Concomitant measurements of wave-in-ice activity from the buoys is used to infer that pancake ice conditions were maintained over at least the first seven days. Analysis of the data shows: (i)~unprecedentedly fast drift speeds in the Southern Ocean; (ii)~high correlation of drift velocities with the surface wind velocities, indicating absence of internal ice stresses $>$100,km in from the edge in 100% remotely sensed ice concentration; and (iii)~presence of a strong inertial signature with a 13,h period. A Langrangian free drift model is developed, including a term for geostrophic currents that reproduces the 13,h period signature in the ice motion. The calibrated model is shown to provide accurate predictions of the ice drift for up to 2,days, and the calibrated parameters provide estimates of wind and ocean drag for pancake floes under storm conditions.
Predicting changes in sea ice cover is critical for shipping, ecosystem monitoring, and climate modeling. Current sea ice models, however, predict more ice than is observed in the Arctic, and less in the Antarctic. Improving the fit of these physics- based models to observations is challenging because the models are expensive to run, and therefore expensive to optimize. Here, we construct a machine learning surrogate that emulates the effect of changing model physics on forecasts of sea ice area from the Los Alamos Sea Ice Model (CICE). We use the surrogate model to investigate the sensitivity of CICE to changes in the parameters governing: ices ridging and albedo; snows albedo, aging, and thermal conductivity; the effect of meltwater on albedo; and the effect of ponds on albedo. We find that CICEs sensitivity to these model parameters differs between hemispheres. We propose that future sea ice modelers separate the snow conductivity and snow grain size distributions on a seasonal and inter-hemispheric basis, and we recommend optimal values of these parameters. This will make it possible to make models that fit observations of both Arctic and Antarctic sea ice more closely. These results demonstrate that important aspects of the behavior of a leading sea ice model can be captured by a relatively simple support vector regression surrogate model, and that this surrogate dramatically increases the ease of tuning the full simulation.
Cenozoic temperature, sea level and CO2 co-variations provide insights into climate sensitivity to external forcings and sea level sensitivity to climate change. Climate sensitivity depends on the initial climate state, but potentially can be accurat ely inferred from precise paleoclimate data. Pleistocene climate oscillations yield a fast-feedback climate sensitivity 3 +/- 1{deg}C for 4 W/m2 CO2 forcing if Holocene warming relative to the Last Glacial Maximum (LGM) is used as calibration, but the error (uncertainty) is substantial and partly subjective because of poorly defined LGM global temperature and possible human influences in the Holocene. Glacial-to-interglacial climate change leading to the prior (Eemian) interglacial is less ambiguous and implies a sensitivity in the upper part of the above range, i.e., 3-4{deg}C for 4 W/m2 CO2 forcing. Slow feedbacks, especially change of ice sheet size and atmospheric CO2, amplify total Earth system sensitivity by an amount that depends on the time scale considered. Ice sheet response time is poorly defined, but we show that the slow response and hysteresis in prevailing ice sheet models are exaggerated. We use a global model, simplified to essential processes, to investigate state-dependence of climate sensitivity, finding an increased sensitivity towards warmer climates, as low cloud cover is diminished and increased water vapor elevates the tropopause. Burning all fossil fuels, we conclude, would make much of the planet uninhabitable by humans, thus calling into question strategies that emphasize adaptation to climate change.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا