ترغب بنشر مسار تعليمي؟ اضغط هنا

Portraying ride-hailing mobility using multi-day trip order data: A case study of Beijing, China

196   0   0.0 ( 0 )
 نشر من قبل Zhengbing He
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Zhengbing He




اسأل ChatGPT حول البحث

As a newly-emerging travel mode in the era of mobile internet, ride-hailing that connects passengers with private-car drivers via an online platform has been very popular all over the world. Although it attracts much attention in both practice and theory, the understanding of ride-hailing is still very limited largely because of the lack of related data. For the first time, this paper introduces ride-hailing drivers multi-day trip order data and portrays ride-hailing mobility in Beijing, China, from the regional and drivers perspectives. The analyses from the regional perspective help understand the spatiotemporal flowing of the ride-hailing demand, and those from the drivers perspective characterize the ride-hailing drivers preferences in providing ride-hailing services. A series of findings are obtained, such as the observation of the spatiotemporal rhythm of a city in using ride-hailing services and two categories of ride-hailing drivers in terms of the correlation between the activity space and working time. Those findings contribute to the understanding of ride-hailing activities, the prediction of ride-hailing demand, the modeling of ride-hailing drivers preferences, and the management of ride-hailing services.



قيم البحث

اقرأ أيضاً

Concepts of Mobility-on-Demand (MOD) and Mobility as a Service (MaaS), which feature the integration of various shared-use mobility options, have gained widespread popularity in recent years. While these concepts promise great benefits to travelers, their heavy reliance on technology raises equity concerns as socially disadvantaged population groups can be left out in an era of on-demand mobility. This paper investigates the potential uptake of MOD transit services (integrated fixed-route and on-demand services) among travelers living in low-income communities. Specially, we analyze peoples latent attitude towards three shared-use mobility services, including ride-hailing services, fixed-route transit, and MOD transit. We conduct a latent class cluster analysis of 825 survey respondents sampled from low-income neighborhoods in Detroit and Ypsilanti, Michigan. We identified three latent segments: shared-mode enthusiast, shared-mode opponent, and fixed-route transit loyalist. People from the shared-mode enthusiast segment often use ride-hailing services and live in areas with poor transit access, and they are likely to be the early adopters of MOD transit services. The shared-mode opponent segment mainly includes vehicle owners who lack interests in shared mobility options. The fixed-route transit loyalist segment includes a considerable share of low-income individuals who face technological barriers to use the MOD transit. We also find that males, college graduates, car owners, people with a mobile data plan, and people living in poor-transit-access areas have a higher level of preferences for MOD transit services. We conclude with policy recommendations for developing more accessible and equitable MOD transit services.
152 - Chao Wang , Yi Hou , 2019
Ride-hailing services are growing rapidly and becoming one of the most disruptive technologies in the transportation realm. Accurate prediction of ride-hailing trip demand not only enables cities to better understand peoples activity patterns, but al so helps ride-hailing companies and drivers make informed decisions to reduce deadheading vehicle miles traveled, traffic congestion, and energy consumption. In this study, a convolutional neural network (CNN)-based deep learning model is proposed for multi-step ride-hailing demand prediction using the trip request data in Chengdu, China, offered by DiDi Chuxing. The CNN model is capable of accurately predicting the ride-hailing pick-up demand at each 1-km by 1-km zone in the city of Chengdu for every 10 minutes. Compared with another deep learning model based on long short-term memory, the CNN model is 30% faster for the training and predicting process. The proposed model can also be easily extended to make multi-step predictions, which would benefit the on-demand shared autonomous vehicles applications and fleet operators in terms of supply-demand rebalancing. The prediction error attenuation analysis shows that the accuracy stays acceptable as the model predicts more steps.
Understanding individual mobility behavior is critical for modeling urban transportation. It provides deeper insights on the generative mechanisms of human movements. Emerging data sources such as mobile phone call detail records, social media posts, GPS observations, and smart card transactions have been used before to reveal individual mobility behavior. In this paper, we report the spatio-temporal mobility behaviors using large-scale data collected from a ride-hailing service platform. Based on passenger-level travel information, we develop an algorithm to identify users visited places and the category of those places. To characterize temporal movement patterns, we reveal the differences in trip generation characteristics between commuting and non-commuting trips and the distribution of gap time between consecutive trips. To understand spatial mobility patterns, we observe the distribution of the number of visited places and their rank, the spatial distribution of residences and workplaces, and the distributions of travel distance and travel time. Our analysis highlights the differences in mobility patterns of the users of ride-hailing services, compared to the findings of existing mobility studies based on other data sources. It shows the potential of developing high-resolution individual-level mobility models that can predict the demand of emerging mobility services with high fidelity and accuracy.
The rapid growth of ride-hailing platforms has created a highly competitive market where businesses struggle to make profits, demanding the need for better operational strategies. However, real-world experiments are risky and expensive for these plat forms as they deal with millions of users daily. Thus, a need arises for a simulated environment where they can predict users reactions to changes in the platform-specific parameters such as trip fares and incentives. Building such a simulation is challenging, as these platforms exist within dynamic environments where thousands of users regularly interact with one another. This paper presents a framework to mimic and predict user, specifically driver, behaviors in ride-hailing services. We use a data-driven hybrid reinforcement learning and imitation learning approach for this. First, the agent utilizes behavioral cloning to mimic driver behavior using a real-world data set. Next, reinforcement learning is applied on top of the pre-trained agents in a simulated environment, to allow them to adapt to changes in the platform. Our framework provides an ideal playground for ride-hailing platforms to experiment with platform-specific parameters to predict drivers behavioral patterns.
How to optimally dispatch orders to vehicles and how to tradeoff between immediate and future returns are fundamental questions for a typical ride-hailing platform. We model ride-hailing as a large-scale parallel ranking problem and study the joint d ecision-making task of order dispatching and fleet management in online ride-hailing platforms. This task brings unique challenges in the following four aspects. First, to facilitate a huge number of vehicles to act and learn efficiently and robustly, we treat each region cell as an agent and build a multi-agent reinforcement learning framework. Second, to coordinate the agents from different regions to achieve long-term benefits, we leverage the geographical hierarchy of the region grids to perform hierarchical reinforcement learning. Third, to deal with the heterogeneous and variant action space for joint order dispatching and fleet management, we design the action as the ranking weight vector to rank and select the specific order or the fleet management destination in a unified formulation. Fourth, to achieve the multi-scale ride-hailing platform, we conduct the decision-making process in a hierarchical way where a multi-head attention mechanism is utilized to incorporate the impacts of neighbor agents and capture the key agent in each scale. The whole novel framework is named as CoRide. Extensive experiments based on multiple cities real-world data as well as analytic synthetic data demonstrate that CoRide provides superior performance in terms of platform revenue and user experience in the task of city-wide hybrid order dispatching and fleet management over strong baselines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا