ترغب بنشر مسار تعليمي؟ اضغط هنا

Sterile neutrino self-interactions: $H_0$ tension and short-baseline anomalies

147   0   0.0 ( 0 )
 نشر من قبل Stefano Gariazzo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sterile neutrinos with a mass in the eV range have been invoked as a possible explanation of a variety of short baseline (SBL) neutrino oscillation anomalies. However, if one considers neutrino oscillations between active and sterile neutrinos, such neutrinos would have been fully thermalised in the early universe, and would be therefore in strong conflict with cosmological bounds. In this study we first update cosmological bounds on the mass and energy density of eV-scale sterile neutrinos. We then perform an updated study of a previously proposed model in which the sterile neutrino couples to a new light pseudoscalar degree of freedom. Consistently with previous analyses, we find that the model provides a good fit to all cosmological data and allows the high value of $H_0$ measured in the local universe to be consistent with measurements of the cosmic microwave background. However, new high $ell$ polarisation data constrain the sterile neutrino mass to be less than approximately 1 eV in this scenario. Finally, we combine the cosmological bounds on the pseudoscalar model with a Bayesian inference analysis of SBL data and conclude that only a sterile mass in narrow ranges around 1 eV remains consistent with both cosmology and SBL data.



قيم البحث

اقرأ أيضاً

We have updated the constraints on flavour universal neutrino self-interactions mediated by a heavy scalar, in the effective 4-fermion interaction limit. We use the relaxation time approximation to modify the collisional neutrino Boltzmann equations, which is known to be very accurate for this particular scenario. Based on the latest CMB data from the Planck 2018 data release as well as auxiliary data we confirm the presence of a region in parameter space with relatively strong self-interactions which provides a better than naively expected fit. However, we also find that the most recent data, in particular high-$ell$ polarisation data from the Planck 2018 release, disfavours this solution even though it cannot yet be excluded. Our analysis takes into account finite neutrino masses (parameterised in terms of $sum m_{ u}$) and allows for a varying neutrino energy density (parameterised in terms of $N_{rm eff}$), and we find that in all cases the neutrino mass bound inferred from cosmological data is robust against the presence of neutrino self-interactions. Finally, we also find that the strong neutrino self-interactions do not lead to a high value of $H_0$ being preferred, i.e. this model is not a viable solution to the current $H_0$ discrepancy.
Sterile neutrinos in the electronvolt mass range are hinted at by a number of terrestrial neutrino experiments. However, such neutrinos are highly incompatible with data from the Cosmic Microwave Background and large scale structure. This paper discu sses how charging sterile neutrinos under a new pseudoscalar interaction can reconcile eV sterile neutrinos with terrestrial neutrino data. We show that this model can reconcile eV sterile neutrinos in cosmology, providing a fit to all available data which is way better than the standard $Lambda$CDM model with one additional fully thermalized sterile neutrino. In particular it also prefers a value of the Hubble parameter much closer to the locally measured value.
New physics in the neutrino sector might be necessary to address anomalies between different neutrino oscillation experiments. Intriguingly, it also offers a possible solution to the discrepant cosmological measurements of $H_0$ and $sigma_8$. We sho w here that delaying the onset of neutrino free-streaming until close to the epoch of matter-radiation equality can naturally accommodate a larger value for the Hubble constant $H_0=72.3 pm 1.4$ km/s/Mpc and a lower value of the matter fluctuations $sigma_8=0.786pm 0.020$, while not degrading the fit to the cosmic microwave background (CMB) damping tail. We achieve this by introducing neutrino self-interactions in the presence of a non-vanishing sum of neutrino masses. This strongly interacting neutrino cosmology prefers $N_{rm eff} = 4.02 pm 0.29$, which has interesting implications for particle model-building and neutrino oscillation anomalies. We show that the absence of the neutrino free-streaming phase shift on the CMB can be compensated by shifting the value of other cosmological parameters, hence providing an important caveat to the detections made in the literature. Due to their impact on the evolution of the gravitational potential at early times, self-interacting neutrinos and their subsequent decoupling leave a rich structure on the matter power spectrum. In particular, we point out the existence of a novel localized feature appearing on scales entering the horizon at the onset of neutrino free-streaming. While the interacting neutrino cosmology provides a better global fit to current cosmological data, we find that traditional Bayesian analyses penalize the model as compared to the standard cosmological. Our analysis shows that it is possible to find radically different cosmological models that nonetheless provide excellent fits to the data, hence providing an impetus to thoroughly explore alternate cosmological scenarios.
Self-interaction in the active neutrinos is studied in the literature to alleviate the $H_0$ tension. Similar self-interaction can also explain the observed dips in the flux of the neutrinos coming from the distant astro-physical sources in IceCube d etectors. In contrast to the flavour universal neutrino interaction considered for solving the $H_0$ tension, which is ruled out from particle physics experiments, we consider flavour specific neutrino interactions. We show that the values of self-interaction coupling constant and mediator mass required for explaining the IceCube dips are inconsistent with the strong neutrino self-interactions preferred by the combination of BAO, HST and Planck data. However, the required amount of self-interaction between tau neutrinos ($ u_tau$) in inverted hierarchy for explaining IceCube dips is consistent with the moderate self-interaction region of cosmological bounds at 1-$sigma$ level. For the case of other interactions and hierarchies, the IceCube preferred amount of self-interaction is consistent with moderate self-interaction region of cosmological bounds at 2-$sigma$ level only.
We investigate the possibility of phantom crossing in the dark energy sector and solution for the Hubble tension between early and late universe observations. We use robust combinations of different cosmological observations, namely the CMB, local me asurement of Hubble constant ($H_0$), BAO and SnIa for this purpose. For a combination of CMB+BAO data which is related to early Universe physics, phantom crossing in the dark energy sector is confirmed at $95$% confidence level and we obtain the constraint $H_0=71.0^{+2.9}_{-3.8}$ km/s/Mpc at 68% confidence level which is in perfect agreement with the local measurement by Riess et al. We show that constraints from different combination of data are consistent with each other and all of them are consistent with phantom crossing in the dark energy sector. For the combination of all data considered, we obtain the constraint $H_0=70.25pm 0.78$ km/s/Mpc at 68% confidence level and the phantom crossing happening at the scale factor $a_m=0.851^{+0.048}_{-0.031}$ at 68% confidence level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا