ﻻ يوجد ملخص باللغة العربية
Sterile neutrinos in the electronvolt mass range are hinted at by a number of terrestrial neutrino experiments. However, such neutrinos are highly incompatible with data from the Cosmic Microwave Background and large scale structure. This paper discusses how charging sterile neutrinos under a new pseudoscalar interaction can reconcile eV sterile neutrinos with terrestrial neutrino data. We show that this model can reconcile eV sterile neutrinos in cosmology, providing a fit to all available data which is way better than the standard $Lambda$CDM model with one additional fully thermalized sterile neutrino. In particular it also prefers a value of the Hubble parameter much closer to the locally measured value.
Short baseline neutrino oscillation experiments have shown hints of the existence of additional sterile neutrinos in the eV mass range. Such sterile neutrinos are incompatible with cosmology because they suppress structure formation unless they can b
Short-baseline neutrino anomalies suggest the existence of low-mass ( m sim O(1)~eV) sterile neutrinos u_s. These would be efficiently produced in the early universe by oscillations with active neutrino species, leading to a thermal population of th
Secret contact interactions among eV sterile neutrinos, mediated by a massive gauge boson $X$ (with $M_X ll M_W$), and characterized by a gauge coupling $g_X$, have been proposed as a mean to reconcile cosmological observations and short-baseline lab
Sterile neutrinos with a mass in the eV range have been invoked as a possible explanation of a variety of short baseline (SBL) neutrino oscillation anomalies. However, if one considers neutrino oscillations between active and sterile neutrinos, such
Short baseline neutrino experiments, like LSND and MiniBooNE experiments, pointed towards the existence of eV mass scale sterile neutrinos. To reconcile sterile neutrinos with cosmology self interaction between sterile neutrinos has been studied. We