ترغب بنشر مسار تعليمي؟ اضغط هنا

not-MIWAE: Deep Generative Modelling with Missing not at Random Data

175   0   0.0 ( 0 )
 نشر من قبل Jes Frellsen
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

When a missing process depends on the missing values themselves, it needs to be explicitly modelled and taken into account while doing likelihood-based inference. We present an approach for building and fitting deep latent variable models (DLVMs) in cases where the missing process is dependent on the missing data. Specifically, a deep neural network enables us to flexibly model the conditional distribution of the missingness pattern given the data. This allows for incorporating prior information about the type of missingness (e.g. self-censoring) into the model. Our inference technique, based on importance-weighted variational inference, involves maximising a lower bound of the joint likelihood. Stochastic gradients of the bound are obtained by using the reparameterisation trick both in latent space and data space. We show on various kinds of data sets and missingness patterns that explicitly modelling the missing process can be invaluable.

قيم البحث

اقرأ أيضاً

We consider the problem of handling missing data with deep latent variable models (DLVMs). First, we present a simple technique to train DLVMs when the training set contains missing-at-random data. Our approach, called MIWAE, is based on the importan ce-weighted autoencoder (IWAE), and maximises a potentially tight lower bound of the log-likelihood of the observed data. Compared to the original IWAE, our algorithm does not induce any additional computational overhead due to the missing data. We also develop Monte Carlo techniques for single and multiple imputation using a DLVM trained on an incomplete data set. We illustrate our approach by training a convolutional DLVM on a static binarisation of MNIST that contains 50% of missing pixels. Leveraging multiple imputation, a convolutional network trained on these incomplete digits has a test performance similar to one trained on complete data. On various continuous and binary data sets, we also show that MIWAE provides accurate single imputations, and is highly competitive with state-of-the-art methods.
89 - Aude Sportisse 2018
Missing values challenge data analysis because many supervised and unsupervised learning methods cannot be applied directly to incomplete data. Matrix completion based on low-rank assumptions are very powerful solution for dealing with missing values . However, existing methods do not consider the case of informative missing values which are widely encountered in practice. This paper proposes matrix completion methods to recover Missing Not At Random (MNAR) data. Our first contribution is to suggest a model-based estimation strategy by modelling the missing mechanism distribution. An EM algorithm is then implemented, involving a Fast Iterative Soft-Thresholding Algorithm (FISTA). Our second contribution is to suggest a computationally efficient surrogate estimation by implicitly taking into account the joint distribution of the data and the missing mechanism: the data matrix is concatenated with the mask coding for the missing values; a low-rank structure for exponential family is assumed on this new matrix, in order to encode links between variables and missing mechanisms. The methodology that has the great advantage of handling different missing value mechanisms is robust to model specification errors.The performances of our methods are assessed on the real data collected from a trauma registry (TraumaBase ) containing clinical information about over twenty thousand severely traumatized patients in France. The aim is then to predict if the doctors should administrate tranexomic acid to patients with traumatic brain injury, that would limit excessive bleeding.
89 - BaoLuo Sun , Lan Liu , Wang Miao 2016
Missing data occur frequently in empirical studies in health and social sciences, often compromising our ability to make accurate inferences. An outcome is said to be missing not at random (MNAR) if, conditional on the observed variables, the missing data mechanism still depends on the unobserved outcome. In such settings, identification is generally not possible without imposing additional assumptions. Identification is sometimes possible, however, if an instrumental variable (IV) is observed for all subjects which satisfies the exclusion restriction that the IV affects the missingness process without directly influencing the outcome. In this paper, we provide necessary and sufficient conditions for nonparametric identification of the full data distribution under MNAR with the aid of an IV. In addition, we give sufficient identification conditions that are more straightforward to verify in practice. For inference, we focus on estimation of a population outcome mean, for which we develop a suite of semiparametric estimators that extend methods previously developed for data missing at random. Specifically, we propose inverse probability weighted estimation, outcome regression-based estimation and doubly robust estimation of the mean of an outcome subject to MNAR. For illustration, the methods are used to account for selection bias induced by HIV testing refusal in the evaluation of HIV seroprevalence in Mochudi, Botswana, using interviewer characteristics such as gender, age and years of experience as IVs.
This paper proposes a fast and accurate method for sparse regression in the presence of missing data. The underlying statistical model encapsulates the low-dimensional structure of the incomplete data matrix and the sparsity of the regression coeffic ients, and the proposed algorithm jointly learns the low-dimensional structure of the data and a linear regressor with sparse coefficients. The proposed stochastic optimization method, Sparse Linear Regression with Missing Data (SLRM), performs an alternating minimization procedure and scales well with the problem size. Large deviation inequalities shed light on the impact of the various problem-dependent parameters on the expected squared loss of the learned regressor. Extensive simulations on both synthetic and real datasets show that SLRM performs better than competing algorithms in a variety of contexts.
We introduce uncertainty regions to perform inference on partial correlations when data are missing not at random. These uncertainty regions are shown to have a desired asymptotic coverage. Their finite sample performance is illustrated via simulations and real data example.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا