ﻻ يوجد ملخص باللغة العربية
Diamond is an excellent band insulator. However, boron (B) doping is known to induce superconductivity. We present two interesting effects in superconducting B doped diamond (BDD) thin films: i) Wohlleben effect (paramagnetic Meissner effect, PME) and ii) a low field spin glass like susceptibility anomaly. We have performed electrical and magnetic measurements (under pressure in one sample) at dopings (1.4 , 2.6 and 3.6) X 1021 cm-3, in a temperature range 2 - 10 K. PME, a low field anomaly in inhomogeneous superconductors could arise from flux trapping, flux compression, or for non-trivial reason such as emergent Josephson Pi junctions. Joint occurrence of PME and spin glass type anomalies points to possible emergence of Pi junctions. BDD is a disordered s-wave superconductor; and Pi junctions could be produced by spin flip scattering of spin half moments when present at weak superconducting regions (Bulaevski et al. 1978). A frustrated network of 0 and Pi junctions will result (Kusmartsev et al. 1992) in a distribution of spontaneous equilibrium supercurrents, a phase glass state. Anderson localized spin half spinons embedded in a metallic fluid (two fluid model of Bhatt et al.) could create Pi junction by spin flip scattering. Our findings are consistent with presence of Pi junctions, invoked to explain their (Bhattacharyya et al.) observation of certain resistance anomaly in BDD.
We report a study of the relaxation time of the restoration of the resistive superconducting state in single crystalline boron-doped diamond using amplitude-modulated absorption of (sub-)THz radiation (AMAR). The films grown on an insulating diamond
Boron-doped diamond granular thin films are known to exhibit superconductivity with an optimal critical temperature of Tc = 7.2K. Here we report the measured complex surface impedance of Boron-doped diamond films in the microwave frequency range usin
We have epitaxially grown c-axis oriented SrxLa1-xCuO2 thin films by rf sputtering on KTaO3 substrates with x = 0.12. The as-grown deposits are insulating and a series of superconducting films with various Tc(R=0) up to 26 K have been obtained by in-
This work investigates the high-pressure structure of freestanding superconducting ($T_{c}$ = 4.3,K) boron doped diamond (BDD) and how it affects the electronic and vibrational properties using Raman spectroscopy and x-ray diffraction in the 0-30,GPa
Superconductivity of boron-doped diamond, reported recently at T_c=4 K, is investigated exploiting its electronic and vibrational analogies to MgB2. The deformation potential of the hole states arising from the C-C bond stretch mode is 60% larger tha