ﻻ يوجد ملخص باللغة العربية
The $gamma p rightarrow K^+Sigma^0$ differential cross section at extremely forward angles was measured at the BGOOD experiment. A three-quarter drop in strength over a narrow range in energy and a strong dependence on the polar angle of the $K^+$ in the centre-of-mass of the reaction is observed at a centre-of-mass energy of 1900,MeV. Residing close to multiple open and hidden strangeness thresholds, the structure appears consistent with meson-baryon threshold effects which may contribute to the reaction mechanism.
$K^+Lambda(1405)$ photoproduction has been studied at the BGOOD experiment via the all neutral decay, $Lambda(1405)rightarrowSigma^0pi^0$. BGOODs unique experimental setup allows both the cross section and $Lambda(1405)$ invariant mass distribution (
$gamma p rightarrow K^+ Lambda$ differential cross sections and recoil polarisation data from threshold for extremely forward angles are presented. The measurements were performed at the BGOOD experiment at ELSA, utilising the high angular and moment
Differential cross sections for the reaction $gamma p to K^{*0} Sigma^+$ are presented at nine bins in photon energy in the range from 1.7 to 3.0 GeV. The kstar was detected by its decay products, $K^+pi^-$, in the CLAS detector at Jefferson Lab. The
Cross sections and polarization transfer observables in the $^{16}$O$(p,p)$ reactions at 392 MeV were measured at several angles between $theta_{lab}=$ 0$^circ$ and 14$^circ$. The non-spin-flip (${Delta}S=0$) and spin-flip (${Delta}S=1$) strengths in
Differential cross sections and photon beam asymmetries for the gamma p -> pi+ n reaction have been measured for 0.6<cos(theta)<1 and Egamma=1.5-2.95 GeV at SPring-8/LEPS. The cross sections monotonically decrease as the photon beam energy increases