ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization control of high-harmonic generation via the spin-orbit interaction

59   0   0.0 ( 0 )
 نشر من قبل Andrew Brown
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We observe the generation of high harmonics in the plane perpendicular to the driving laser polarization and show that these are driven by the spin-orbit interaction. Using R-Matrix with time-dependence theory, we demonstrate that for certain initial states either circularly- or linearly- polarized harmonics arise via well-known selection rules between atomic states controlled by the spin-orbit interaction. Finally, we elucidate the connection between the observed harmonics and the phase of the intial state.

قيم البحث

اقرأ أيضاً

We formulate the concept of dominant interaction Hamiltonians to obtain an integrable approximation to the dynamics of an electron exposed to a strong laser field and an atomic potential leading to high harmonic generation. The concept relies on loca l information in phase space to switch between the interactions. This information is provided by classical integrable trajectories from which we construct a semiclassical wave function. The high harmonic spectrum obtained is in excellent agreement with the accurate quantum spectrum. The separation in the atomic potential and laser coupling interactions should facilitate the calculation of high harmonic spectra in complex systems.
We present an experimental technique using orbital angular momentum (OAM) in a fundamental laser field to drive High Harmonic Generation (HHG). The mixing of beams with different OAM allows to generate two laser foci tightly spaced to study the phase and amplitude of HHG produced in diatomic nitrogen. Nitrogen is used as a well studied system to show the quality of OAM based HHG interferometry.
59 - Longqing Yi 2020
When a high power laser beam irradiates a small aperture on a solid foil target, the strong laser field drives surface plasma oscillation at the periphery of this aperture, which acts as a relativistic oscillating window. The diffracted light that tr avels though such an aperture contains high-harmonics of the fundamental laser frequency. When the driving laser beam is circularly polarised, the high-harmonic generation (HHG) process facilitates a conversion of the spin angular momentum of the fundamental light into the intrinsic orbital angular momentum of the harmonics. By means of theoretical modeling and fully 3D particle-in-cell simulations, it is shown the harmonic beams of order $n$ are optical vortices with topological charge $|l| = n-1$, and a power-law spectrum $I_npropto n^{-3.5}$ is produced for sufficiently intense laser beams, where $I_n$ is the intensity of the $n$th harmonic. This work opens up a new realm of possibilities for producing intense extreme ultraviolet vortices, and diffraction-based HHG studies at relativistic intensities.
The development of alternative platforms for computing has been a longstanding goal for physics, and represents a particularly pressing concern as conventional transistors approach the limit of miniaturization. A potential alternatice paradigm is tha t of reservoir computing, which leverages unknown, but highly non-linear transformations of input-data to perform computations. This has the advantage that many physical systems exhibit precisely the type of non-linear input-output relationships necessary for them to function as reservoirs. Consequently, the quantum effects which obstruct the further development of silicon electronics become an advantage for a reservoir computer. Here we demonstrate that even the most basic constituents of matter - atoms - can act as a reservoir for optical computers, thanks to the phenomenon of High Harmonic Generation (HHG). A prototype single-atom computer for classification problems is proposed, where parameters of the classification model are mapped to optical elements. We numerically demonstrate that this `all-optical computer can successfully classify data with an accuracy that is strongly dependent on dynamical non-linearities. This may pave the way for the development of petahertz information processing platforms.
96 - S. Almalki , A. Parks , G. Bart 2018
A three step model for high harmonic generation from impurities in solids is developed. The process is found to be similar to high harmonic generation in atomic and molecular gases with the main difference coming from the non-parabolic nature of the bands. This opens a new avenue for strong field atomic and molecular physics in the condensed matter phase. As a first application, our conceptual study demonstrates the feasibility of tomographic measurement of impurity orbitals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا