ﻻ يوجد ملخص باللغة العربية
We compute the Fukaya category of the symplectic blowup of a compact rational symplectic manifold at a point in the following sense: Suppose a collection of Lagrangian branes satisfy Abouzaids criterion for split-generation of a bulk-deformed Fukaya category of cleanly-intersecting Lagrangian branes. We show that for a small blow-up parameter, their inverse images in the blowup together with a collection of branes near the exceptional locus split-generate the Fukaya category of the blowup. This categorifies a result on quantum cohomology by Bayer and is an example of a more general conjectural description of the behavior of the Fukaya category under transitions occuring in the minimal model program, namely that mmp transitions generate additional summands.
The Nadler-Zaslow correspondence famously identifies the finite-dimensional Floer homology groups between Lagrangians in cotangent bundles with the finite-dimensional Hom spaces between corresponding constructible sheaves. We generalize this correspo
We develop a set of tools for doing computations in and of (partially) wrapped Fukaya categories. In particular, we prove (1) a descent (cosheaf) property for the wrapped Fukaya category with respect to so-called Weinstein sectorial coverings and (2)
Let $M$ be an exact symplectic manifold with $c_1(M)=0$. Denote by $mathrm{Fuk}(M)$ the Fukaya category of $M$. We show that the dual space of the bar construction of $mathrm{Fuk}(M)$ has a differential graded noncommutative Poisson structure. As a c
Suppose one has found a non-empty sub-category $mathcal{A}$ of the Fukaya category of a compact Calabi-Yau manifold $X$ which is homologically smooth in the sense of non-commutative geometry, a condition intrinsic to $mathcal{A}$. Then, we show $math
Let $M$ be an exact symplectic manifold with contact type boundary such that $c_1(M)=0$. In this paper we show that the cyclic cohomology of the Fukaya category of $M$ has the structure of an involutive Lie bialgebra. Inspired by a work of Cieliebak-