Let $M$ be an exact symplectic manifold with contact type boundary such that $c_1(M)=0$. In this paper we show that the cyclic cohomology of the Fukaya category of $M$ has the structure of an involutive Lie bialgebra. Inspired by a work of Cieliebak-Latschev we show that there is a Lie bialgebra homomorphism from the linearized contact homology of $M$ to the cyclic cohomology of the Fukaya category. Our study is also motivated by string topology and 2-dimensional topological conformal field theory.
We compute the Fukaya category of the symplectic blowup of a compact rational symplectic manifold at a point in the following sense: Suppose a collection of Lagrangian branes satisfy Abouzaids criterion for split-generation of a bulk-deformed Fukaya
category of cleanly-intersecting Lagrangian branes. We show that for a small blow-up parameter, their inverse images in the blowup together with a collection of branes near the exceptional locus split-generate the Fukaya category of the blowup. This categorifies a result on quantum cohomology by Bayer and is an example of a more general conjectural description of the behavior of the Fukaya category under transitions occuring in the minimal model program, namely that mmp transitions generate additional summands.
We study naturality properties of the transverse invariant in knot Floer homology under contact (+1)-surgery. This can be used as a calculational tool for the transverse invariant. As a consequence, we show that the Eliashberg-Chekanov twist knots E_n are not transversely simple for n odd and n>3.
We construct geometric maps from the cyclic homology groups of the (compact or wrapped) Fukaya category to the corresponding $S^1$-equivariant (Floer/quantum or symplectic) cohomology groups, which are natural with respect to all Gysin and periodicit
y exact sequences and are isomorphisms whenever the (non-equivariant) open-closed map is. These {em cyclic open-closed maps} give (a) constructions of geometric smooth and/or proper Calabi-Yau structures on Fukaya categories (which in the proper case implies the Fukaya category has a cyclic A-infinity model in characteristic 0) and (b) a purely symplectic proof of the non-commutative Hodge-de Rham degeneration conjecture for smooth and proper subcategories of Fukaya categories of compact symplectic manifolds. Further applications of cyclic open-closed maps, to counting curves in mirror symmetry and to comparing topological field theories, are the subject of joint projects with Perutz-Sheridan [GPS1, GPS2] and Cohen [CG].
The Nadler-Zaslow correspondence famously identifies the finite-dimensional Floer homology groups between Lagrangians in cotangent bundles with the finite-dimensional Hom spaces between corresponding constructible sheaves. We generalize this correspo
ndence to incorporate the infinite-dimensional spaces of morphisms at infinity, given on the Floer side by Reeb trajectories (also known as wrapping) and on the sheaf side by allowing unbounded infinite rank sheaves which are categorically compact. When combined with existing sheaf theoretic computations, our results confirm many new instances of homological mirror symmetry. More precisely, given a real analytic manifold $M$ and a subanalytic isotropic subset $Lambda$ of its co-sphere bundle $S^*M$, we show that the partially wrapped Fukaya category of $T^*M$ stopped at $Lambda$ is equivalent to the category of compact objects in the unbounded derived category of sheaves on $M$ with microsupport inside $Lambda$. By an embedding trick, we also deduce a sheaf theoretic description of the wrapped Fukaya category of any Weinstein sector admitting a stable polarization.
We develop a set of tools for doing computations in and of (partially) wrapped Fukaya categories. In particular, we prove (1) a descent (cosheaf) property for the wrapped Fukaya category with respect to so-called Weinstein sectorial coverings and (2)
that the partially wrapped Fukaya category of a Weinstein manifold with respect to a mostly Legendrian stop is generated by the cocores of the critical handles and the linking disks to the stop. We also prove (3) a `stop removal equals localization result, and (4) that the Fukaya--Seidel category of a Lefschetz fibration with Weinstein fiber is generated by the Lefschetz thimbles. These results are derived from three main ingredients, also of independent use: (5) a Kunneth formula (6) an exact triangle in the Fukaya category associated to wrapping a Lagrangian through a Legendrian stop at infinity and (7) a geometric criterion for when a pushforward functor between wrapped Fukaya categories of Liouville sectors is fully faithful.