ترغب بنشر مسار تعليمي؟ اضغط هنا

An Efficient Quadratic Programming Relaxation Based Algorithm for Large-Scale MIMO Detection

167   0   0.0 ( 0 )
 نشر من قبل Qingna Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiple-input multiple-output (MIMO) detection is a fundamental problem in wireless communications and it is strongly NP-hard in general. Massive MIMO has been recognized as a key technology in the fifth generation (5G) and beyond communication networks, which on one hand can significantly improve the communication performance, and on the other hand poses new challenges of solving the corresponding optimization problems due to the large problem size. While various efficient algorithms such as semidefinite relaxation (SDR) based approaches have been proposed for solving the small-scale MIMO detection problem, they are not suitable to solve the large-scale MIMO detection problem due to their high computational complexities. In this paper, we propose an efficient sparse quadratic programming (SQP) relaxation based algorithm for solving the large-scale MIMO detection problem. In particular, we first reformulate the MIMO detection problem as an SQP problem. By dropping the sparse constraint, the resulting relaxation problem shares the same global minimizer with the SQP problem. In sharp contrast to the SDRs for the MIMO detection problem, our relaxation does not contain any (positive semidefinite) matrix variable and the numbers of variables and constraints in our relaxation are significantly less than those in the SDRs, which makes it particularly suitable for the large-scale problem. Then we propose a projected Newton based quadratic penalty method to solve the relaxation problem, which is guaranteed to converge to the vector of transmitted signals under reasonable conditions. By extensive numerical experiments, when applied to solve large-scale problems, the proposed algorithm achieves better detection performance than a recently proposed generalized power method.

قيم البحث

اقرأ أيضاً

The multiple-input multiple-output (MIMO) detection problem, a fundamental problem in modern digital communications, is to detect a vector of transmitted symbols from the noisy outputs of a fading MIMO channel. The maximum likelihood detector can be formulated as a complex least-squares problem with discrete variables, which is NP-hard in general. Various semidefinite relaxation (SDR) methods have been proposed in the literature to solve the problem due to their polynomial-time worst-case complexity and good detection error rate performance. In this paper, we consider two popular classes of SDR-based detectors and study the conditions under which the SDRs are tight and the relationship between different SDR models. For the enhanced complex and real SDRs proposed recently by Lu et al., we refine their analysis and derive the necessary and sufficient condition for the complex SDR to be tight, as well as a necessary condition for the real SDR to be tight. In contrast, we also show that another SDR proposed by Mobasher et al. is not tight with high probability under mild conditions. Moreover, we establish a general theorem that shows the equivalence between two subsets of positive semidefinite matrices in different dimensions by exploiting a special separable structure in the constraints. Our theorem recovers two existing equivalence results of SDRs defined in different settings and has the potential to find other applications due to its generality.
We study the problem of detecting infeasibility of large-scale linear programming problems using the primal-dual hybrid gradient method (PDHG) of Chambolle and Pock (2011). The literature on PDHG has mostly focused on settings where the problem at ha nd is assumed to be feasible. When the problem is not feasible, the iterates of the algorithm do not converge. In this scenario, we show that the iterates diverge at a controlled rate towards a well-defined ray. The direction of this ray is known as the infimal displacement vector $v$. The first contribution of our work is to prove that this vector recovers certificates of primal and dual infeasibility whenever they exist. Based on this fact, we propose a simple way to extract approximate infeasibility certificates from the iterates of PDHG. We study three different sequences that converge to the infimal displacement vector: the difference of iterates, the normalized iterates, and the normalized average. All of them are easy to compute, and thus the approach is suitable for large-scale problems. Our second contribution is to establish tight convergence rates for these sequences. We demonstrate that the normalized iterates and the normalized average achieve a convergence rate of $O(1/k)$, improving over the known rate of $O(1/sqrt{k})$. This rate is general and applies to any fixed-point iteration of a nonexpansive operator. Thus, it is a result of independent interest since it covers a broad family of algorithms, including, for example, ADMM, and can be applied settings beyond linear programming, such as quadratic and semidefinite programming. Further, in the case of linear programming we show that, under nondegeneracy assumptions, the iterates of PDHG identify the active set of an auxiliary feasible problem in finite time, which ensures that the difference of iterates exhibits eventual linear convergence to the infimal displacement vector.
We introduce a class of specially structured linear programming (LP) problems, which has favorable modeling capability for important application problems in different areas such as optimal transport, discrete tomography and economics. To solve these generally large-scale LP problems efficiently, we design an implementable inexact entropic proximal point algorithm (iEPPA) combined with an easy-to-implement dual block coordinate descent method as a subsolver. Unlike existing entropy-type proximal point algorithms, our iEPPA employs a more practically checkable stopping condition for solving the associated subproblems while achieving provable convergence. Moreover, when solving the capacity constrained multi-marginal optimal transport (CMOT) problem (a special case of our LP problem), our iEPPA is able to bypass the underlying numerical instability issues that often appear in the popular entropic regularization approach, since our algorithm does not require the proximal parameter to be very small in order to obtain an accurate approximate solution. Numerous numerical experiments show that our iEPPA is highly efficient and robust for solving large-scale CMOT problems, in comparison to the (stabilized) Dykstras algorithm and the commercial solver Gurobi. Moreover, the experiments on discrete tomography also highlight the potential modeling power of our model.
We introduce a large scale benchmark for continuous collision detection (CCD) algorithms, composed of queries manually constructed to highlight challenging degenerate cases and automatically generated using existing simulators to cover common cases. We use the benchmark to evaluate the accuracy, correctness, and efficiency of state-of-the-art continuous collision detection algorithms, both with and without minimal separation. We discover that, despite the widespread use of CCD algorithms, existing algorithms are either: (1) correct but impractically slow, (2) efficient but incorrect, introducing false negatives which will lead to interpenetration, or (3) correct but over conservative, reporting a large number of false positives which might lead to inaccuracies when integrated in a simulator. By combining the seminal interval root finding algorithm introduced by Snyder in 1992 with modern predicate design techniques, we propose a simple and efficient CCD algorithm. This algorithm is competitive with state of the art methods in terms of runtime while conservatively reporting the time of impact and allowing explicit trade off between runtime efficiency and number of false positives reported.
491 - Xiaojun Zhou 2021
In this paper, a novel multiagent based state transition optimization algorithm with linear convergence rate named MASTA is constructed. It first generates an initial population randomly and uniformly. Then, it applies the basic state transition algo rithm (STA) to the population and generates a new population. After that, It computes the fitness values of all individuals and finds the best individuals in the new population. Moreover, it performs an effective communication operation and updates the population. With the above iterative process, the best optimal solution is found out. Experimental results based on some common benchmark functions and comparison with some stat-of-the-art optimization algorithms, the proposed MASTA algorithm has shown very superior and comparable performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا