ترغب بنشر مسار تعليمي؟ اضغط هنا

Bifurcation study for a surface-acoustic-wave driven meniscus

88   0   0.0 ( 0 )
 نشر من قبل Kevin David Joachim Mitas
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A thin-film model for a meniscus driven by Rayleigh surface acoustic waves (SAW) is analysed, a problem closely related to the classical Landau-Levich or dragged-film problem where a plate is withdrawn at constant speed from a bath. We consider a mesoscopic hydrodynamic model for a partially wetting liquid, were wettability is incorporated via a Derjaguin (or disjoining) pressure and combine SAW driving with the elements known from the dragged-film problem. For a one-dimensional substrate, i.e., neglecting transversal perturbations, we employ numerical path continuation to investigate in detail how the various occurring steady and time-periodic states depend on relevant control parameters like the Weber number and SAW strength. The bifurcation structure related to qualitative transitions caused by the SAW is analysed with particular attention on the Hopf bifurcations related to the emergence of time-periodic states corresponding to the regular shedding of lines from the meniscus. The interplay of several of these bifurcations is investigated obtaining information relevant to the entire class of dragged-film problems.



قيم البحث

اقرأ أيضاً

60 - Marco Cecchini 2004
Electroluminescence emission controlled by means of surface acoustic waves (SAWs) in planar light-emitting diodes (pLEDs) is demonstrated. Interdigital transducers for SAW generation were integrated onto pLEDs fabricated following the scheme which we have recently developed. Current-voltage, light-voltage and photoluminescence characteristics are presented at cryogenic temperatures. We argue that this scheme represents a valuable building block for advanced optoelectronic architectures.
Hydrodynamic instabilities often cause spatio-temporal pattern formations and transitions between them. We investigate a model experimental system, a density oscillator, where the bifurcation from a resting state to an oscillatory state is triggered by the increase in the density difference of the two fluids. Our results show that the oscillation amplitude increases from zero and the period decreases above a critical density difference. The detailed data close to the bifurcation point provide a critical exponent consistent with the supercritical Hopf bifurcation.
104 - R. Ito , S. Takada , A. Ludwig 2020
We develop a coherent beam splitter for single electrons driven through two tunnel-coupled quantum wires by surface acoustic waves (SAWs). The output current through each wire oscillates with gate voltages to tune the tunnel-coupling and potential di fference between the wires. This oscillation is assigned to coherent electron tunneling motion that can be used to encode a flying qubit and is well reproduced by numerical calculations of time evolution of the SAW-driven single electrons. The oscillation visibility is currently limited to about 3%, but robust against decoherence, indicating that the SAW-electron can serve as a novel platform for a solid-state flying qubit.
In this paper we report on 2D numerical simulations concerning linear and nonlinear evolution of surface-tension-driven instability in two-fluid systems heated from below using classical and phase-field models. In the phase-field formalism, one intro duces an order parameter called phase-field function to characterize thermodynamically the phases. All the system parameters are assumed to vary continuously from one fluid bulk to another (as linear functions of the phase-field). The Navier-Stokes equation (with some extra terms) and the heat equation are written only once for the whole system. The evolution of the phase-field is described by the Cahn-Hilliard equation. In the sharp-interface limit the results found by the phase-field formalism recover the results given by the classical formulation.
The dryland vegetation model proposed by Rietkerk and collaborators has been explored from a bifurcation perspective in several previous studies. Our aim here is to explore in some detail the bifurcation phenomena present when the coefficients of the model are allowed to vary in a wide range of parameters. In addition to the primary bifurcation parameter, the precipitation, we allow the two infiltration rate parameters to vary as well. We find that these two parameters control the size and stability of nonhomogeneous biomass states in a way that can be predicted. Further, they control when certain homogeneous and inhomogeneous (in space) periodic (in time) orbits exist. Finally, we show that the model possesses infinitely many unphysical steady state branches. We then present a modification of the model which eliminates these unphysical solutions, and briefly explore this new model for a fixed set of parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا