ترغب بنشر مسار تعليمي؟ اضغط هنا

A Numerical Bifurcation Analysis of a Dryland Vegetation Model

119   0   0.0 ( 0 )
 نشر من قبل Cory Ward
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dryland vegetation model proposed by Rietkerk and collaborators has been explored from a bifurcation perspective in several previous studies. Our aim here is to explore in some detail the bifurcation phenomena present when the coefficients of the model are allowed to vary in a wide range of parameters. In addition to the primary bifurcation parameter, the precipitation, we allow the two infiltration rate parameters to vary as well. We find that these two parameters control the size and stability of nonhomogeneous biomass states in a way that can be predicted. Further, they control when certain homogeneous and inhomogeneous (in space) periodic (in time) orbits exist. Finally, we show that the model possesses infinitely many unphysical steady state branches. We then present a modification of the model which eliminates these unphysical solutions, and briefly explore this new model for a fixed set of parameters.



قيم البحث

اقرأ أيضاً

In this paper, we study theoretically the emergence of localized states of vegetation close to the onset of desertification. These states are formed through the locking of vegetation fronts, connecting a uniform vegetation state with a bare soil stat e, which occurs nearby the Maxwell point of the system. To study these structures we consider a universal model of vegetation dynamics in drylands, which has been obtained as the normal form for different vegetation models. Close to the Maxwell point localized gaps and spots of vegetation exist and undergo collapsed snaking. The presence of gaps strongly suggest that the ecosystem may undergo a recovering process. In contrast, the presence of spots may indicate that the ecosystem is close to desertification.
A density oscillator exhibits limit-cycle oscillations driven by the density difference of the two fluids. We performed two-dimensional hydrodynamic simulations with a simple model, and reproduced the oscillatory flow observed in experiments. As the density difference is increased as a bifurcation parameter, a damped oscillation changes to a limit-cycle oscillation through a supercritical Hopf bifurcation. We estimated the critical density difference at the bifurcation point and confirmed that the period of the oscillation remains finite even around the bifurcation point.
A bifurcation analysis of dune shape transition is made. By use of a reduced model of dune morphodynamics, dune skeleton model, we elucidate the transition mechanism between different shapes of dunes under unidirectional wind. It was found that the d ecrease in the total amount of sand in the system and/or the lateral sand flow shifts the stable state from a straight transverse dune to wavy transverse dune through a pitchfork bifurcation. A further decrease causes wavy transverse dunes to shift into barchans through a Hopf bifurcation. These bifurcation structures reveal the transition mechanism of dune shapes under unidirectional wind.
The climate variability associated with the Pleistocene Ice Ages is one of the most fascinating puzzles in the Earth Sciences still awaiting a satisfactory explanation. In particular, the explanation of the dominant 100 kyr period of the glacial cycl es over the last million years is a long-standing problem. Based on bifurcation analyses of low-order models, many theories have been suggested to explain these cycles and their frequency. The new aspect in this contribution is that, for the first time, numerical bifurcation analysis is applied to a two-dimensional marine ice sheet model with a dynamic grounding line. In this model, we find Hopf bifurcations with an oscillation period of about 100 kyr which may be relevant to glacial cycles.
78 - P. G. Grinevich 2017
In this paper we study the numerical instabilities of the NLS Akhmediev breather, the simplest space periodic, one-mode perturbation of the unstable background, limiting our considerations to the simplest case of one unstable mode. In agreement with recent theoretical findings of the authors, in the situation in which the round-off errors are negligible with respect to the perturbations due to the discrete scheme used in the numerical experiments, the split-step Fourier method (SSFM), the numerical output is well-described by a suitable genus 2 finite-gap solution of NLS. This solution can be written in terms of different elementary functions in different time regions and, ultimately, it shows an exact recurrence of rogue waves described, at each appearance, by the Akhmediev breather. We discover a remarkable empirical formula connecting the recurrence time with the number of time steps used in the SSFM and, via our recent theoretical findings, we establish that the SSFM opens up a vertical unstable gap whose length can be computed with high accuracy, and is proportional to the inverse of the square of the number of time steps used in the SSFM. This neat picture essentially changes when the round-off error is sufficiently large. Indeed experiments in standard double precision show serious instabilities in both the periods and phases of the recurrence. In contrast with it, as predicted by the theory, replacing the exact Akhmediev Cauchy datum by its first harmonic approximation, we only slightly modify the numerical output. Let us also remark, that the first rogue wave appearance is completely stable in all experiments and is in perfect agreement with the Akhmediev formula and with the theoretical prediction in terms of the Cauchy data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا