ترغب بنشر مسار تعليمي؟ اضغط هنا

GREGOR: Optics Redesign and Updates from 2018-2020

81   0   0.0 ( 0 )
 نشر من قبل Lucia Kleint
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The GREGOR telescope was inaugurated in 2012. In 2018, we started a complete upgrade, involving optics, alignment, instrumentation, mechanical upgrades for vibration reduction, updated control systems, and building enhancements and, in addition, adapted management and policies. This paper describes all major updates performed during this time. Since 2012, all powered mirrors except for M1 were exchanged. Starting from 2020, GREGOR observes with diffraction-limited performance and a new optics and instrument layout.

قيم البحث

اقرأ أيضاً

214 - C. Kuckein 2017
A huge amount of data has been acquired with the GREGOR Fabry-Perot Interferometer (GFPI), large-format facility cameras, and since 2016 with the High-resolution Fast Imager (HiFI). These data are processed in standardized procedures with the aim of providing science-ready data for the solar physics community. For this purpose, we have developed a user-friendly data reduction pipeline called sTools based on the Interactive Data Language (IDL) and licensed under creative commons license. The pipeline delivers reduced and image-reconstructed data with a minimum of user interaction. Furthermore, quick-look data are generated as well as a webpage with an overview of the observations and their statistics. All the processed data are stored online at the GREGOR GFPI and HiFI data archive of the Leibniz Institute for Astrophysics Potsdam (AIP). The principles of the pipeline are presented together with selected high-resolution spectral scans and images processed with sTools.
188 - Kristine Spekkens 2019
This white paper submitted for the 2020 Canadian Long-Range Planning process (LRP2020) presents the prospects for Canada and the Square Kilometre Array (SKA) from 2020-2030, focussing on the first phase of the project (SKA1) scheduled to begin constr uction early in the next decade. SKA1 will make transformational advances in our understanding of the Universe across a wide range of fields, and Canadians are poised to play leadership roles in several. Canadian key SKA technologies will ensure a good return on capital investment in addition to strong scientific returns, positioning Canadian astronomy for future opportunities well beyond 2030. We therefore advocate for Canadas continued scientific and technological engagement in the SKA from 2020-2030 through participation in the construction and operations phases of SKA1.
76 - Jason T. Wright 2021
In the spirit of Trimbles ``Astrophysics in XXXX series, I very briefly and subjectively review developments in SETI in 2020. My primary focus is 74 papers and books published or made public in 2020, which I sort into six broad categories: results fr om actual searches, new search methods and instrumentation, target and frequency seleciton, the development of technosignatures, theory of ETIs, and social aspects of SETI.
This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the geq10 MK plasma in solar active regions and solar flares would allow th e cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of approx10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics. We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of approx100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane approx100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.
The Gemini Multi-conjugate adaptive optics System (GeMS) is a facility instrument for the Gemini-South telescope. It delivers uniform, near-diffraction-limited image quality at near-infrared wavelengths over a 2 arcminute field of view. Together with the Gemini South Adaptive Optics Imager (GSAOI), a near-infrared wide field camera, GeMS/GSAOIs combination of high spatial resolution and a large field of view will make it a premier facility for precision astrometry. Potential astrometric science cases cover a broad range of topics including exo-planets, star formation, stellar evolution, star clusters, nearby galaxies, black holes and neutron stars, and the Galactic center. In this paper, we assess the astrometric performance and limitations of GeMS/GSAOI. In particular, we analyze deep, mono-epoch images, multi-epoch data and distortion calibration. We find that for single-epoch, un-dithered data, an astrometric error below 0.2 mas can be achieved for exposure times exceeding one minute, provided enough stars are available to remove high-order distortions. We show however that such performance is not reproducible for multi-epoch observations, and an additional systematic error of ~0.4 mas is evidenced. This systematic multi-epoch error is the dominant error term in the GeMS/GSAOI astrometric error budget, and it is thought to be due to time-variable distortion induced by gravity flexure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا