ترغب بنشر مسار تعليمي؟ اضغط هنا

Very High Resolution Solar X-ray Imaging Using Diffractive Optics

132   0   0.0 ( 0 )
 نشر من قبل Brian Dennis Brian R. Dennis
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the geq10 MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7 keV observed during solar flares with an angular resolution as fine as 0.1 arcsec - over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of approx10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics. We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of approx100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane approx100 m away. High resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.



قيم البحث

اقرأ أيضاً

Context. Remote sensing of weak and small-scale solar magnetic fields is of utmost relevance for a number of important open questions in solar physics. This requires the acquisition of spectropolarimetric data with high spatial resolution (0.1 arcsec ) and low noise (1e-3 to 1e-5 of the continuum intensity). The main limitations to obtain these measurements from the ground, are the degradation of the image resolution produced by atmospheric seeing and the seeing-induced crosstalk (SIC). Aims. We introduce the prototype of the Fast Solar Polarimeter (FSP), a new ground-based, high-cadence polarimeter that tackles the above-mentioned limitations by producing data that are optimally suited for the application of post-facto image restoration, and by operating at a modulation frequency of 100 Hz to reduce SIC. Results. The pnCCD camera reaches 400 fps while keeping a high duty cycle (98.6 %) and very low noise (4.94 erms). The modulator is optimized to have high (> 80%) total polarimetric efficiency in the visible spectral range. This allows FSP to acquire 100 photon-noise-limited, full-Stokes measurements per second. We found that the seeing induced signals present in narrow-band, non-modulated, quiet-sun measurements are (a) lower than the noise (7e-5) after integrating 7.66 min, (b) lower than the noise (2.3e-4) after integrating 1.16 min and (c) slightly above the noise (4e-3) after restoring case (b) by means of a multi-object multi-frame blind deconvolution. In addition, we demonstrate that by using only narrow-band images (with low SNR of 13.9) of an active region, we can obtain one complete set of high-quality restored measurements about every 2 s.
The MIRAX X-ray observatory, the first Brazilian-led astrophysics space mission, is designed to perform an unprecedented wide-field, wide-band hard X-ray (5-200 keV) survey of Galactic X-ray transient sources. In the current configuration, MIRAX will carry a set of four coded-mask telescopes with high spatial resolution Cadmium Zinc Telluride (CZT) detector planes, each one consisting of an array of 64 closely tiled CZT pixelated detectors. Taken together, the four telescopes will have a total detection area of 959 cm^2, a large field of view (60x60 degrees FWHM), high angular resolution for this energy range (6 arcmin) and very good spectral resolution (~2 keV @ 60 keV). A stratospheric balloon-borne prototype of one of the MIRAX telescopes has been developed, tested and flown by the Harvard-Smithsonian Center for Astrophysics (CfA) as part of the ProtoEXIST program. In this paper we show results of validation and calibration tests with individual CZT detectors of the ProtoEXIST second generation experiment (P2). Each one of 64 detector units of the P2 detector plane consists of an ASIC, developed by Caltech for the NuSTAR telescope, hybridized to a CZT crystal with 0.6 mm pixel size. The performance of each detector was evaluated using radioactive sources in the laboratory. The calibration results show that the P2 detectors have average energy resolution of ~2.1 keV @ 60 keV and ~2.3 keV @ 122 keV. P2 was also successfully tested on near-space environment on a balloon flight, demonstrating the detector unit readiness for integration on a space mission telescope, as well as satisfying all MIRAX mission requirements.
High-energy astrophysics is a relatively young scientific field, made possible by space-borne telescopes. During the half-century history of x-ray astronomy, the sensitivity of focusing x-ray telescopes-through finer angular resolution and increased effective area-has improved by a factor of a 100 million. This technological advance has enabled numerous exciting discoveries and increasingly detailed study of the high-energy universe-including accreting (stellar-mass and super-massive) black holes, accreting and isolated neutron stars, pulsar-wind nebulae, shocked plasma in supernova remnants, and hot thermal plasma in clusters of galaxies. As the largest structures in the universe, galaxy clusters constitute a unique laboratory for measuring the gravitational effects of dark matter and of dark energy. Here, we review the history of high-resolution x-ray telescopes and highlight some of the scientific results enabled by these telescopes. Next, we describe the planned next-generation x-ray-astronomy facility-the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility-Generation X. The scientific objectives of such a mission will require very large areas (about 10000 m2) of highly-nested lightweight grazing-incidence mirrors with exceptional (about 0.1-arcsecond) angular resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.
We present a detailed analysis of the XMM-Newton RGS high resolution X-ray spectra of the Seyfert 2 galaxy, Mrk573. This analysis is complemented by the study of the Chandra image, and its comparison to optical (HST) and radio (VLA) data. The soft X- ray emission is mainly due to gas photoionised by the central AGN, as indicated by the detection of radiative recombination continua from OVII and OVIII, as well as by the prominence of the OVII forbidden line. This result is confirmed by the best fit obtained with a self-consistent CLOUDY photoionisation model. However, a collisionally excited component is also required, in order to reproduce the FeXVII lines, accounting for about 1/3 of the total luminosity in the 15-26 A band. Once adopted the same model in the Chandra ACIS data, another photoionised component, with higher ionisation parameter, is needed to take into account emission from higher Z metals. The broadband ACIS spectrum also confirms the Compton-thick nature of the source. The imaging analysis shows the close morphological correspondence between the soft X-ray and the [OIII] emission. The radio emission appears much more compact, although clearly aligned with the narrow line region. The collisional phase of the soft X-ray emission may be due to starburst, requiring a star formation rate of $simeq5-9$ M$_odot$ yr$^{-1}$, but there is no clear evidence of this kind of activity from other wavelengths. On the other hand, it may be related to the radio ejecta, responsible for the heating of the plasma interacting with the outflow, but the estimated pressure of the hot gas is much larger than the pressure of the radio jets, assuming equipartition and under reasonable physical parameters.
498 - Zhong Liu , Jun Xu , Bo-Zhong Gu 2014
The New Vacuum Solar Telescope (NVST) is a 1 meter vacuum solar telescope that aims to observe the fine structures on the Sun. The main tasks of NVST are high resolution imaging and spectral observations, including the measurements of solar magnetic field. NVST is the primary ground-based facility of Chinese solar community in this solar cycle. It is located by the Fuxian Lake of southwest China, where the seeing is good enough to perform high resolution observations. In this paper, we first introduce the general conditions of Fuxian Solar Observatory and the primary science cases of NVST. Then, the basic structures of this telescope and instruments are described in detail. Finally, some typical high resolution data of solar photosphere and chromosphere are also shown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا