ترغب بنشر مسار تعليمي؟ اضغط هنا

TreeRNN: Topology-Preserving Deep GraphEmbedding and Learning

123   0   0.0 ( 0 )
 نشر من قبل Yecheng Lyu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

General graphs are difficult for learning due to their irregular structures. Existing works employ message passing along graph edges to extract local patterns using customized graph kernels, but few of them are effective for the integration of such local patterns into global features. In contrast, in this paper we study the methods to transfer the graphs into trees so that explicit orders are learned to direct the feature integration from local to global. To this end, we apply the breadth first search (BFS) to construct trees from the graphs, which adds direction to the graph edges from the center node to the peripheral nodes. In addition, we proposed a novel projection scheme that transfer the trees to image representations, which is suitable for conventional convolution neural networks (CNNs) and recurrent neural networks (RNNs). To best learn the patterns from the graph-tree-images, we propose TreeRNN, a 2D RNN architecture that recurrently integrates the image pixels by rows and columns to help classify the graph categories. We evaluate the proposed method on several graph classification datasets, and manage to demonstrate comparable accuracy with the state-of-the-art on MUTAG, PTC-MR and NCI1 datasets.



قيم البحث

اقرأ أيضاً

To ensure the privacy of sensitive data used in the training of deep learning models, a number of privacy-preserving methods have been designed by the research community. However, existing schemes are generally designed to work with textual data, or are not efficient when a large number of images is used for training. Hence, in this paper we propose a lightweight and efficient approach to preserve image privacy while maintaining the availability of the training set. Specifically, we design the pixel block mixing algorithm for image classification privacy preservation in deep learning. To evaluate its utility, we use the mixed training set to train the ResNet50, VGG16, InceptionV3 and DenseNet121 models on the WIKI dataset and the CNBC face dataset. Experimental findings on the testing set show that our scheme preserves image privacy while maintaining the availability of the training set in the deep learning models. Additionally, the experimental results demonstrate that we achieve good performance for the VGG16 model on the WIKI dataset and both ResNet50 and DenseNet121 on the CNBC dataset. The pixel block algorithm achieves fairly high efficiency in the mixing of the images, and it is computationally challenging for the attackers to restore the mixed training set to the original training set. Moreover, data augmentation can be applied to the mixed training set to improve the trainings effectiveness.
In this paper, we present new data pre-processing and augmentation techniques for DNN-based raw image denoising. Compared with traditional RGB image denoising, performing this task on direct camera sensor readings presents new challenges such as how to effectively handle various Bayer patterns from different data sources, and subsequently how to perform valid data augmentation with raw images. To address the first problem, we propose a Bayer pattern unification (BayerUnify) method to unify different Bayer patterns. This allows us to fully utilize a heterogeneous dataset to train a single denoising model instead of training one model for each pattern. Furthermore, while it is essential to augment the dataset to improve model generalization and performance, we discovered that it is error-prone to modify raw images by adapting augmentation methods designed for RGB images. Towards this end, we present a Bayer preserving augmentation (BayerAug) method as an effective approach for raw image augmentation. Combining these data processing technqiues with a modified U-Net, our method achieves a PSNR of 52.11 and a SSIM of 0.9969 in NTIRE 2019 Real Image Denoising Challenge, demonstrating the state-of-the-art performance. Our code is available at https://github.com/Jiaming-Liu/BayerUnifyAug.
Reconstructing Portal Vein and Hepatic Vein trees from contrast enhanced abdominal CT scans is a prerequisite for preoperative liver surgery simulation. Existing deep learning based methods treat vascular tree reconstruction as a semantic segmentatio n problem. However, vessels such as hepatic and portal vein look very similar locally and need to be traced to their source for robust label assignment. Therefore, semantic segmentation by looking at local 3D patch results in noisy misclassifications. To tackle this, we propose a novel multi-task deep learning architecture for vessel tree reconstruction. The network architecture simultaneously solves the task of detecting voxels on vascular centerlines (i.e. nodes) and estimates connectivity between center-voxels (edges) in the tree structure to be reconstructed. Further, we propose a novel connectivity metric which considers both inter-class distance and intra-class topological distance between center-voxel pairs. Vascular trees are reconstructed starting from the vessel source using the learned connectivity metric using the shortest path tree algorithm. A thorough evaluation on public IRCAD dataset shows that the proposed method considerably outperforms existing semantic segmentation based methods. To the best of our knowledge, this is the first deep learning based approach which learns multi-label tree structure connectivity from images.
71 - Yizi Chen 2021
The digitization of historical maps enables the study of ancient, fragile, unique, and hardly accessible information sources. Main map features can be retrieved and tracked through the time for subsequent thematic analysis. The goal of this work is t he vectorization step, i.e., the extraction of vector shapes of the objects of interest from raster images of maps. We are particularly interested in closed shape detection such as buildings, building blocks, gardens, rivers, etc. in order to monitor their temporal evolution. Historical map images present significant pattern recognition challenges. The extraction of closed shapes by using traditional Mathematical Morphology (MM) is highly challenging due to the overlapping of multiple map features and texts. Moreover, state-of-the-art Convolutional Neural Networks (CNN) are perfectly designed for content image filtering but provide no guarantee about closed shape detection. Also, the lack of textural and color information of historical maps makes it hard for CNN to detect shapes that are represented by only their boundaries. Our contribution is a pipeline that combines the strengths of CNN (efficient edge detection and filtering) and MM (guaranteed extraction of closed shapes) in order to achieve such a task. The evaluation of our approach on a public dataset shows its effectiveness for extracting the closed boundaries of objects in historical maps.
68 - Y. D. Wang 2019
Urban water is important for the urban ecosystem. Accurate and efficient detection of urban water with remote sensing data is of great significance for urban management and planning. In this paper, we proposed a new method to combine Google Earth Eng ine (GEE) with multiscale convolutional neural network (MSCNN) to extract urban water from Landsat images, which is summarized as offline training and online prediction (OTOP). That is, the training of MSCNN was completed offline, and the process of urban water extraction was implemented on GEE with the trained parameters of MSCNN. The OTOP can give full play to the respective advantages of GEE and CNN, and make the use of deep learning method on GEE more flexible. It can process available satellite images with high performance without data download and storage, and the overall performance of urban water extraction is also higher than that of the modified normalized difference water index (MNDWI) and random forest. The mean kappa, F1-score and intersection over union (IoU) of urban water extraction with the OTOP in Changchun, Wuhan, Kunming and Guangzhou reached 0.924, 0.930 and 0.869, respectively. The results of the extended validation in the other major cities of China also show that the OTOP is robust and can be used to extract different types of urban water, which benefits from the structural design and training of the MSCNN. Therefore, the OTOP is especially suitable for the study of large-scale and long-term urban water change detection in the background of urbanization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا