ترغب بنشر مسار تعليمي؟ اضغط هنا

Illuminating Invisible Grain Boundaries in Coalesced Single-Orientation WS2 Monolayer Films

94   0   0.0 ( 0 )
 نشر من قبل Danielle Hickey
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Engineering atomic-scale defects is crucial for realizing wafer-scale, single-crystalline transition metal dichalcogenide monolayers for electronic devices. However, connecting atomic-scale defects to larger morphologies poses a significant challenge. Using electron microscopy and atomistic simulations, we provide insights into WS2 crystal growth mechanisms, providing a direct link between synthetic conditions and the microstructure. Dark-field TEM imaging of coalesced monolayer WS2 films illuminates defect arrays that atomic-resolution STEM imaging identifies as translational grain boundaries. Imaging reveals the films to have nearly a single orientation with imperfectly stitched domains. Through atomic-resolution imaging and ReaxFF reactive force field-based molecular dynamics simulations, we observe two types of translational mismatch and discuss their atomic structures and origin. Our results indicate that the mismatch results from relatively fast growth rates. Through statistical analysis of >1300 facets, we demonstrate that the macrostructural features are constructed from nanometer-scale building blocks, describing the system across sub-{AA}ngstrom to multi-micrometer length scales.



قيم البحث

اقرأ أيضاً

Structural transformations at interfaces are of profound fundamental interest as complex examples of phase transitions in low-dimensional systems. Despite decades of extensive research, no compelling evidence exists for structural transformations in high-angle grain boundaries in elemental systems. Here we show that the critical impediment to observations of such phase transformations in atomistic modeling has been rooted in inadequate simulation methodology. The proposed new methodology allows variations in atomic density inside the grain boundary and reveals multiple grain boundary phases with different atomic structures. Reversible first-order transformations between such phases are observed by varying temperature or injecting point defects into the boundary region. Due to the presence of multiple metastable phases, grain boundaries can absorb significant amounts of point defects created inside the material by processes such as irradiation. We propose a novel mechanism of radiation damage healing in metals which may guide further improvements in radiation resistance of metallic materials through grain boundary engineering.
We report on the superlubric sliding of monolayer tungsten disulfide (WS2) on epitaxial graphene (EG) on silicon carbide (SiC). WS2 single-crystalline flakes with lateral size of hundreds of nanometers are obtained via chemical vapor deposition (CVD) on EG and microscopic and diffraction analyses indicate that the WS2/EG stack is predominantly aligned with zero azimuthal rotation. Our experimental findings show that the WS2 flakes are prone to slide over graphene surfaces at room temperature when perturbed by a scanning probe microscopy (SPM) tip. Atomistic force field based molecular dynamics simulations indicate that through local physical deformation of the WS2 flake, the scanning tip releases enough energy to the flake to overcome the motion activation barrier and to trigger an ultra-low friction roto-translational displacement, that is superlubric. Experimental observations indicate that after the sliding, the WS2 flakes rest with a rotation of npi/3 with respect to graphene. Atomically resolved investigations show that the interface is atomically sharp and that the WS2 lattice is strain-free. These results help to shed light on nanotribological phenomena in van der Waals (vdW) heterostacks and suggest that the applicative potential of the WS2/graphene heterostructure can be extended by novel mechanical prospects.
Flexoelectricity is a type of ubiquitous and prominent electromechanical coupling, pertaining to the response of electrical polarization to mechanical strain gradients while not restricted to the symmetry of materials. However, large elastic deformat ion in most solids is usually difficult to achieve and the strain gradient at minuscule is challenging to control. Here we exploit the exotic structural inhomogeneity of grain boundary to achieve a huge strain gradient (~ 1.2 nm-1) within 3 ~ 4 unit-cells, and thus obtain atomic-scale flexoelectric polarization up to ~ 38 {mu}C/cm2 at a 24 LaAlO3 grain boundary. The nanoscale flexoelectricity also modifies the electrical activity of grain boundaries. Moreover, we prove that it is a general and feasible way to form large strain gradients at atomic scale by altering the misorientation angles of grain boundaries in different dielectric materials. Thus, engineering of grain boundaries provides an effective pathway to achieve tunable flexoelectricity and broadens the electromechanical functionalities of non-piezoelectric materials.
Grain boundaries (GBs) are structural imperfections that typically degrade the performance of materials. Here we show that dislocations and GBs in two-dimensional (2D) metal dichalcogenides MX2 (M = Mo, W; X = S, Se) can actually improve the material by giving it a qualitatively new physical property: magnetism. The dislocations studied all have a substantial magnetic moment of ~1 Bohr magneton. In contrast, dislocations in other well-studied 2D materials are typically non-magnetic. GBs composed of pentagon-heptagon pairs interact ferromagnetically and transition from semiconductor to half-metal or metal as a function of tilt angle and/or doping level. When the tilt angle exceeds 47{deg} the structural energetics favor square-octagon pairs and the GB becomes an antiferromagnetic semiconductor. These exceptional magnetic properties arise from an interplay of dislocation-induced localized states, doping, and locally unbalanced stoichiometry. Purposeful engineering of topological GBs may be able to convert MX2 into a promising 2D magnetic semiconductor.
259 - J.H.T. Ransley 2003
Using an optimized bridge geometry we have been able to make accurate measurements of the properties of YBa2Cu3O7-delta grain boundaries above Tc. The results show a strong dependence of the change of resistance with temperature on grain boundary ang le. Analysis of our results in the context of band-bending allows us to estimate the height of the potential barrier present at the grain boundary interface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا