ﻻ يوجد ملخص باللغة العربية
The random-order or secretary model is one of the most popular beyond-worst case model for online algorithms. While it avoids the pessimism of the traditional adversarial model, in practice we cannot expect the input to be presented in perfectly random order. This has motivated research on ``best of both worlds (algorithms with good performance on both purely stochastic and purely adversarial inputs), or even better, on inputs that are a mix of both stochastic and adversarial parts. Unfortunately the latter seems much harder to achieve and very few results of this type are known. Towards advancing our understanding of designing such robust algorithms, we propose a random-order model with bursts of adversarial time steps. The assumption of burstiness of unexpected patterns is reasonable in many contexts, since changes (e.g. spike in a demand for a good) are often triggered by a common external event. We then consider the Knapsack Secretary problem in this model: there is a knapsack of size $k$ (e.g., available quantity of a good), and in each of the $n$ time steps an item comes with its value and size in $[0,1]$ and the algorithm needs to make an irrevocable decision whether to accept or reject the item. We design an algorithm that gives an approximation of $1 - tilde{O}(Gamma/k)$ when the adversarial time steps can be covered by $Gamma ge sqrt{k}$ intervals of size $tilde{O}(frac{n}{k})$. In particular, setting $Gamma = sqrt{k}$ gives a $(1 - O(frac{ln^2 k}{sqrt{k}}))$-approximation that is resistant to up to a $frac{ln^2 k}{sqrt{k}}$-fraction of the items being adversarial, which is almost optimal even in the absence of adversarial items. Also, setting $Gamma = tilde{Omega}(k)$ gives a constant approximation that is resistant to up to a constant fraction of items being adversarial.
We provide online algorithms for secretary matching in general weighted graphs, under the well-studied models of vertex and edge arrivals. In both models, edges are associated with arbitrary weights that are unknown from the outset, and are revealed
A variant of the classical knapsack problem is considered in which each item is associated with an integer weight and a qualitative level. We define a dominance relation over the feasible subsets of the given item set and show that this relation defi
The classical analysis of online algorithms, due to its worst-case nature, can be quite pessimistic when the input instance at hand is far from worst-case. Often this is not an issue with machine learning approaches, which shine in exploiting pattern
In the matroid secretary problem we are given a stream of elements and asked to choose a set of elements that maximizes the total value of the set, subject to being an independent set of a matroid given in advance. The difficulty comes from the assum
In the ordinal Matroid Secretary Problem (MSP), elements from a weighted matroid are presented in random order to an algorithm that must incrementally select a large weight independent set. However, the algorithm can only compare pairs of revealed el