ترغب بنشر مسار تعليمي؟ اضغط هنا

Knapsack Secretary with Bursty Adversary

79   0   0.0 ( 0 )
 نشر من قبل Marco Molinaro
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The random-order or secretary model is one of the most popular beyond-worst case model for online algorithms. While it avoids the pessimism of the traditional adversarial model, in practice we cannot expect the input to be presented in perfectly random order. This has motivated research on ``best of both worlds (algorithms with good performance on both purely stochastic and purely adversarial inputs), or even better, on inputs that are a mix of both stochastic and adversarial parts. Unfortunately the latter seems much harder to achieve and very few results of this type are known. Towards advancing our understanding of designing such robust algorithms, we propose a random-order model with bursts of adversarial time steps. The assumption of burstiness of unexpected patterns is reasonable in many contexts, since changes (e.g. spike in a demand for a good) are often triggered by a common external event. We then consider the Knapsack Secretary problem in this model: there is a knapsack of size $k$ (e.g., available quantity of a good), and in each of the $n$ time steps an item comes with its value and size in $[0,1]$ and the algorithm needs to make an irrevocable decision whether to accept or reject the item. We design an algorithm that gives an approximation of $1 - tilde{O}(Gamma/k)$ when the adversarial time steps can be covered by $Gamma ge sqrt{k}$ intervals of size $tilde{O}(frac{n}{k})$. In particular, setting $Gamma = sqrt{k}$ gives a $(1 - O(frac{ln^2 k}{sqrt{k}}))$-approximation that is resistant to up to a $frac{ln^2 k}{sqrt{k}}$-fraction of the items being adversarial, which is almost optimal even in the absence of adversarial items. Also, setting $Gamma = tilde{Omega}(k)$ gives a constant approximation that is resistant to up to a constant fraction of items being adversarial.



قيم البحث

اقرأ أيضاً

We provide online algorithms for secretary matching in general weighted graphs, under the well-studied models of vertex and edge arrivals. In both models, edges are associated with arbitrary weights that are unknown from the outset, and are revealed online. Under vertex arrival, vertices arrive online in a uniformly random order; upon the arrival of a vertex $v$, the weights of edges from $v$ to all previously arriving vertices are revealed, and the algorithm decides which of these edges, if any, to include in the matching. Under edge arrival, edges arrive online in a uniformly random order; upon the arrival of an edge $e$, its weight is revealed, and the algorithm decides whether to include it in the matching or not. We provide a $5/12$-competitive algorithm for vertex arrival, and show it is tight. For edge arrival, we provide a $1/4$-competitive algorithm. Both results improve upon state of the art bounds for the corresponding settings. Interestingly, for vertex arrival, secretary matching in general graphs outperforms secretary matching in bipartite graphs with 1-sided arrival, where $1/e$ is the best possible guarantee.
A variant of the classical knapsack problem is considered in which each item is associated with an integer weight and a qualitative level. We define a dominance relation over the feasible subsets of the given item set and show that this relation defi nes a preorder. We propose a dynamic programming algorithm to compute the entire set of non-dominated rank cardinality vectors and we state two greedy algorithms, which efficiently compute a single efficient solution.
The classical analysis of online algorithms, due to its worst-case nature, can be quite pessimistic when the input instance at hand is far from worst-case. Often this is not an issue with machine learning approaches, which shine in exploiting pattern s in past inputs in order to predict the future. However, such predictions, although usually accurate, can be arbitrarily poor. Inspired by a recent line of work, we augment three well-known online settings with machine learned predictions about the future, and develop algorithms that take them into account. In particular, we study the following online selection problems: (i) the classical secretary problem, (ii) online bipartite matching and (iii) the graphic matroid secretary problem. Our algorithms still come with a worst-case performance guarantee in the case that predictions are subpar while obtaining an improved competitive ratio (over the best-known classical online algorithm for each problem) when the predictions are sufficiently accurate. For each algorithm, we establish a trade-off between the competitive ratios obtained in the two respective cases.
In the matroid secretary problem we are given a stream of elements and asked to choose a set of elements that maximizes the total value of the set, subject to being an independent set of a matroid given in advance. The difficulty comes from the assum ption that decisions are irrevocable: if we choose to accept an element when it is presented by the stream then we can never get rid of it, and if we choose not to accept it then we cannot later add it. Babaioff, Immorlica, and Kleinberg [SODA 2007] introduced this problem, gave O(1)-competitive algorithms for certain classes of matroids, and conjectured that every matroid admits an O(1)-competitive algorithm. However, most matroids that are known to admit an O(1)-competitive algorithm can be easily represented using graphs (e.g. graphic and transversal matroids). In particular, there is very little known about F-representable matroids (the class of matroids that can be represented as elements of a vector space over a field F), which are one of the foundational matroid classes. Moreover, most of the known techniques are as dependent on graph theory as they are on matroid theory. We go beyond graphs by giving an O(1)-competitive algorithm for regular matroids (the class of matroids that are representable over every field), and use techniques that are matroid-theoretic rather than graph-theoretic. We use the regular matroid decomposition theorem of Seymour to decompose any regular matroid into matroids which are either graphic, cographic, or isomorphic to R_{10}, and then show how to combine algorithms for these basic classes into an algorithm for regular matroids. This allows us to generalize beyond regular matroids to any class of matroids that admits such a decomposition into classes for which we already have good algorithms. In particular, we give an O(1)-competitive algorithm for the class of max-flow min-cut matroids.
In the ordinal Matroid Secretary Problem (MSP), elements from a weighted matroid are presented in random order to an algorithm that must incrementally select a large weight independent set. However, the algorithm can only compare pairs of revealed el ements without using its numerical value. An algorithm is $alpha$ probability-competitive if every element from the optimum appears with probability $1/alpha$ in the output. We present a technique to design algorithms with strong probability-competitive ratios, improving the guarantees for almost every matroid class considered in the literature: e.g., we get ratios of 4 for graphic matroids (improving on $2e$ by Korula and Pal [ICALP 2009]) and of 5.19 for laminar matroids (improving on 9.6 by Ma et al. [THEOR COMPUT SYST 2016]). We also obtain new results for superclasses of $k$ column sparse matroids, for hypergraphic matroids, certain gammoids and graph packing matroids, and a $1+O(sqrt{log rho/rho})$ probability-competitive algorithm for uniform matroids of rank $rho$ based on Kleinbergs $1+O(sqrt{1/rho})$ utility-competitive algorithm [SODA 2005] for that class. Our second contribution are algorithms for the ordinal MSP on arbitrary matroids of rank $rho$. We devise an $O(log rho)$ probability-competitive algorithm and an $O(loglog rho)$ ordinal-competitive algorithm, a weaker notion of competitiveness but stronger than the utility variant. These are based on the $O(loglog rho)$ utility-competitive algorithm by Feldman et al.~[SODA 2015].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا