ترغب بنشر مسار تعليمي؟ اضغط هنا

Fokker-Planck approach to non-Gaussian normal diffusion: Hierarchical dynamics for diffusing diffusivity

189   0   0.0 ( 0 )
 نشر من قبل Sumiyoshi Abe
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sumiyoshi Abe




اسأل ChatGPT حول البحث

A theoretical framework is developed for the phenomenon of non-Gaussian normal diffusion that has experimentally been observed in several heterogeneous systems. From the Fokker-Planck equation with the dynamical structure with largely separated time scales, a set of three equations are derived for the fast degree of freedom, the slow degree of freedom and the coupling between these two hierarchies. It is shown that this approach consistently describes diffusing diffusivity and non-Gaussian normal diffusion.



قيم البحث

اقرأ أيضاً

89 - C.A. Marsh , G. Backx , M.H.Ernst 1997
The algorithm for Dissipative Particle Dynamics (DPD), as modified by Espagnol and Warren, is used as a starting point for proving an H-theorem for the free energy and deriving hydrodynamic equations. Equilibrium and transport properties of the DPD f luid are explicitly calculated in terms of the system parameters for the continuous time version of the model.
A Brownian particle floating in a narrow corrugated (sinusoidal) channel with fluctuating cross section exhibits non-Gaussian normal diffusion. Its displacements are distributed according to a Gaussian law for very short and asymptotically large obse rvation times, whereas a robust exponential distribution emerges for intermediate observation times of the order of the channel fluctuation correlation time. For intermediate to large observation times the particle undergoes normal diffusion with one and the same effective diffusion constant. These results are analytically interpreted without having recourse to heuristic assumptions. Such a simple model thus reproduces recent experimental and numerical observations obtained by investigating complex biophysical systems.
A considerable number of systems have recently been reported in which Brownian yet non-Gaussian dynamics was observed. These are processes characterised by a linear growth in time of the mean squared displacement, yet the probability density function of the particle displacement is distinctly non-Gaussian, and often of exponential (Laplace) shape. This apparently ubiquitous behaviour observed in very different physical systems has been interpreted as resulting from diffusion in inhomogeneous environments and mathematically represented through a variable, stochastic diffusion coefficient. Indeed different models describing a fluctuating diffusivity have been studied. Here we present a new view of the stochastic basis describing time dependent random diffusivities within a broad spectrum of distributions. Concretely, our study is based on the very generic class of the generalised Gamma distribution. Two models for the particle spreading in such random diffusivity settings are studied. The first belongs to the class of generalised grey Brownian motion while the second follows from the idea of diffusing diffusivities. The two processes exhibit significant characteristics which reproduce experimental results from different biological and physical systems. We promote these two physical models for the description of stochastic particle motion in complex environments.
We present a classical, mesoscopic derivation of the Fokker-Planck equation for diffusion in an expanding medium. To this end, we take a conveniently generalized Chapman-Kolmogorov equation as the starting point. We obtain an analytical expression fo r the Greens function (propagator) and investigate both analytically and numerically how this function and the associated moments behave. We also study first-passage properties in expanding hyperspherical geometries. We show that in all cases the behavior is determined to a great extent by the so-called Brownian conformal time $tau(t)$, which we define via the relation $dot tau=1/a^2$, where $a(t)$ is the expansion scale factor. If the medium expansion is driven by a power law [$a(t) propto t^gamma$ with $gamma>0$], we find interesting crossover effects in the mixing effectiveness of the diffusion process when the characteristic exponent $gamma$ is varied. Crossover effects are also found at the level of the survival probability and of the moments of the first passage-time distribution with two different regimes separated by the critical value $gamma=1/2$. The case of an exponential scale factor is analyzed separately both for expanding and contracting media. In the latter situation, a stationary probability distribution arises in the long time limit.
Anomalous dynamics characterized by non-Gaussian probability distributions (PDFs) and/or temporal long-range correlations can cause subtle modifications of conventional fluctuation relations. As prototypes we study three variants of a generic time-fr actional Fokker-Planck equation with constant force. Type A generates superdiffusion, type B subdiffusion and type C both super- and subdiffusion depending on parameter variation. Furthermore type C obeys a fluctuation-dissipation relation whereas A and B do not. We calculate analytically the position PDFs for all three cases and explore numerically their strongly non-Gaussian shapes. While for type C we obtain the conventional transient work fluctuation relation, type A and type B both yield deviations by featuring a coefficient that depends on time and by a nonlinear dependence on the work. We discuss possible applications of these types of dynamics and fluctuation relations to experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا