ﻻ يوجد ملخص باللغة العربية
A Brownian particle floating in a narrow corrugated (sinusoidal) channel with fluctuating cross section exhibits non-Gaussian normal diffusion. Its displacements are distributed according to a Gaussian law for very short and asymptotically large observation times, whereas a robust exponential distribution emerges for intermediate observation times of the order of the channel fluctuation correlation time. For intermediate to large observation times the particle undergoes normal diffusion with one and the same effective diffusion constant. These results are analytically interpreted without having recourse to heuristic assumptions. Such a simple model thus reproduces recent experimental and numerical observations obtained by investigating complex biophysical systems.
A theoretical framework is developed for the phenomenon of non-Gaussian normal diffusion that has experimentally been observed in several heterogeneous systems. From the Fokker-Planck equation with the dynamical structure with largely separated time
Recent theoretical modeling offers a unified picture for the description of stochastic processes characterized by a crossover from anomalous to normal behavior. This is particularly welcome, as a growing number of experiments suggest the crossover to
We discuss the situations under which Brownian yet non-Gaussian (BnG) diffusion can be observed in the model of a particles motion in a random landscape of diffusion coefficients slowly varying in space. Our conclusion is that such behavior is extrem
We performed extensive numerical simulation of diffusion-limited aggregation in two dimensional channel geometry. Contrary to earlier claims, the measured fractal dimension D = 1.712 +- 0.002 and its leading correction to scaling are the same as in t
Motivated by electronic transport in graphene-like structures, we study the diffusion of a classical point particle in Fermi potentials situated on a triangular lattice. We call this system a soft Lorentz gas, as the hard disks in the conventional pe