ﻻ يوجد ملخص باللغة العربية
Although there has been significant research in egocentric action recognition, most methods and tasks, including EPIC-KITCHENS, suppose a fixed set of action classes. Fixed-set classification is useful for benchmarking methods, but is often unrealistic in practical settings due to the compositionality of actions, resulting in a functionally infinite-cardinality label set. In this work, we explore generalization with an open set of classes by unifying two popular approaches: few- and zero-shot generalization (the latter which we reframe as cross-modal few-shot generalization). We propose a new set of splits derived from the EPIC-KITCHENS dataset that allow evaluation of open-set classification, and use these splits to show that adding a metric-learning loss to the conventional direct-alignment baseline can improve zero-shot classification by as much as 10%, while not sacrificing few-shot performance.
Few-shot learning (FSL) for action recognition is a challenging task of recognizing novel action categories which are represented by few instances in the training data. In a more generalized FSL setting (G-FSL), both seen as well as novel action cate
Zero-shot action recognition is the task of recognizingaction classes without visual examples, only with a seman-tic embedding which relates unseen to seen classes. Theproblem can be seen as learning a function which general-izes well to instances of
Zero-shot action recognition is the task of classifying action categories that are not available in the training set. In this setting, the standard evaluation protocol is to use existing action recognition datasets(e.g. UCF101) and randomly split the
Few-shot learning aims to recognize instances from novel classes with few labeled samples, which has great value in research and application. Although there has been a lot of work in this area recently, most of the existing work is based on image cla
Many recent advances in computer vision are the result of a healthy competition among researchers on high quality, task-specific, benchmarks. After a decade of active research, zero-shot learning (ZSL) models accuracy on the Imagenet benchmark remain