ترغب بنشر مسار تعليمي؟ اضغط هنا

An operator view of policy gradient methods

73   0   0.0 ( 0 )
 نشر من قبل Dibya Ghosh
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We cast policy gradient methods as the repeated application of two operators: a policy improvement operator $mathcal{I}$, which maps any policy $pi$ to a better one $mathcal{I}pi$, and a projection operator $mathcal{P}$, which finds the best approximation of $mathcal{I}pi$ in the set of realizable policies. We use this framework to introduce operator-bas

قيم البحث

اقرأ أيضاً

We use functional mirror ascent to propose a general framework (referred to as FMA-PG) for designing policy gradient methods. The functional perspective distinguishes between a policys functional representation (what are its sufficient statistics) an d its parameterization (how are these statistics represented) and naturally results in computationally efficient off-policy updates. For simple policy parameterizations, the FMA-PG framework ensures that the optimal policy is a fixed point of the updates. It also allows us to handle complex policy parameterizations (e.g., neural networks) while guaranteeing policy improvement. Our framework unifies several PG methods and opens the way for designing sample-efficient variants of existing methods. Moreover, it recovers important implementation heuristics (e.g., using forward vs reverse KL divergence) in a principled way. With a softmax functional representation, FMA-PG results in a variant of TRPO with additional desirable properties. It also suggests an improved variant of PPO, whose robustness and efficiency we empirically demonstrate on MuJoCo. Via experiments on simple reinforcement learning problems, we evaluate algorithms instantiated by FMA-PG.
We study the use of policy gradient algorithms to optimize over a class of generalized Thompson sampling policies. Our central insight is to view the posterior parameter sampled by Thompson sampling as a kind of pseudo-action. Policy gradient methods can then be tractably applied to search over a class of sampling policies, which determine a probability distribution over pseudo-actions (i.e., sampled parameters) as a function of observed data. We also propose and compare policy gradient estimators that are specialized to Bayesian bandit problems. Numerical experiments demonstrate that direct policy search on top of Thompson sampling automatically corrects for some of the algorithms known shortcomings and offers meaningful improvements even in long horizon problems where standard Thompson sampling is extremely effective.
Traditional model-based reinforcement learning approaches learn a model of the environment dynamics without explicitly considering how it will be used by the agent. In the presence of misspecified model classes, this can lead to poor estimates, as so me relevant available information is ignored. In this paper, we introduce a novel model-based policy search approach that exploits the knowledge of the current agent policy to learn an approximate transition model, focusing on the portions of the environment that are most relevant for policy improvement. We leverage a weighting scheme, derived from the minimization of the error on the model-based policy gradient estimator, in order to define a suitable objective function that is optimized for learning the approximate transition model. Then, we integrate this procedure into a batch policy improvement algorithm, named Gradient-Aware Model-based Policy Search (GAMPS), which iteratively learns a transition model and uses it, together with the collected trajectories, to compute the new policy parameters. Finally, we empirically validate GAMPS on benchmark domains analyzing and discussing its properties.
Direct policy gradient methods for reinforcement learning are a successful approach for a variety of reasons: they are model free, they directly optimize the performance metric of interest, and they allow for richly parameterized policies. Their prim ary drawback is that, by being local in nature, they fail to adequately explore the environment. In contrast, while model-based approaches and Q-learning directly handle exploration through the use of optimism, their ability to handle model misspecification and function approximation is far less evident. This work introduces the the Policy Cover-Policy Gradient (PC-PG) algorithm, which provably balances the exploration vs. exploitation tradeoff using an ensemble of learned policies (the policy cover). PC-PG enjoys polynomial sample complexity and run time for both tabular MDPs and, more generally, linear MDPs in an infinite dimensional RKHS. Furthermore, PC-PG also has strong guarantees under model misspecification that go beyond the standard worst case $ell_{infty}$ assumptions; this includes approximation guarantees for state aggregation under an average case error assumption, along with guarantees under a more general assumption where the approximation error under distribution shift is controlled. We complement the theory with empirical evaluation across a variety of domains in both reward-free and reward-driven settings.
We build a theoretical framework for designing and understanding practical meta-learning methods that integrates sophisticated formalizations of task-similarity with the extensive literature on online convex optimization and sequential prediction alg orithms. Our approach enables the task-similarity to be learned adaptively, provides sharper transfer-risk bounds in the setting of statistical learning-to-learn, and leads to straightforward derivations of average-case regret bounds for efficient algorithms in settings where the task-environment changes dynamically or the tasks share a certain geometric structure. We use our theory to modify several popular meta-learning algorithms and improve their meta-test-time performance on standard problems in few-shot learning and federated learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا