ﻻ يوجد ملخص باللغة العربية
Lattice Monte Carlo calculations of interacting systems on non-bipartite lattices exhibit an oscillatory imaginary phase known as the phase or sign problem, even at zero chemical potential. One method to alleviate the sign problem is to analytically continue the integration region of the state variables into the complex plane via holomorphic flow equations. For asymptotically large flow times the state variables approach manifolds of constant imaginary phase known as Lefschetz thimbles. However, flowing such variables and calculating the ensuing Jacobian is a computationally demanding procedure. In this paper we demonstrate that neural networks can be trained to parameterize suitable manifolds for this class of sign problem and drastically reduce the computational cost. We apply our method to the Hubbard model on the triangle and tetrahedron, both of which are non-bipartite. At strong interaction strengths and modest temperatures the tetrahedron suffers from a severe sign problem that cannot be overcome with standard reweighting techniques, while it quickly yields to our method. We benchmark our results with exact calculations and comment on future directions of this work.
The repulsive fermionic Hubbard model is a typical model describing correlated electronic systems. Although it is a simple model with only a kinetic term and a local interaction term, their competition generates rich phases. When the interaction part
Quantum gas microscopes for ultracold atoms can provide high-resolution real-space snapshots of complex many-body systems. We implement machine learning to analyze and classify such snapshots of ultracold atoms. Specifically, we compare the data from
We study the Hubbard model with non-Hermitian asymmetric hopping terms. The conjugate hopping terms are introduced for two spin components so that the negative sign is canceled out. This ensures that the quantum Monte Carlo simulation is free from th
The solution of complex many-body lattice models can often be found by defining an energy functional of the relevant density of the problem. For instance, in the case of the Hubbard model the spin-resolved site occupation is enough to describe the sy
Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy$_2$Ti$_2$O$_7$. Understanding has been hindered by issues including disorder, glass formation, and interpretatio