ﻻ يوجد ملخص باللغة العربية
Parity-violating (PV) gravity has recently attracted interest in several aspects. One of them is the axion-graviton coupling to test the axion-dark matter model. Moreover, by extending Chern-Simons (CS) gravity to include derivatives of a scalar field up to the second order, a more general class of PV gravity theory, which we call the CNCL model, has been proposed~[M. Crisostomi {it et al.}, Phys. Rev. D, {bf 97}, 044034 (2018)]. The model can be further extended by including even higher derivatives of the scalar field and/or higher curvature terms. In this paper, we discuss the effect of parity violation in the gravitational sector on the propagation of gravitational waves from binary coalescence by introducing a model-independent parametrization of modification. Our parametrization includes the CNCL model as well as CS gravity. The effect of parity violation on the gravitational waveform is maximum when the source binary orientation to our line of sight is edge-on, while the modified waveform reduces to the parity-symmetric one when the source is face-on. We perform a search for the signature of such modification by using the LIGO/Virgo O1/O2 catalog. We find that the catalog data is consistent with general relativity and obtain constraints on parity violation in gravity for various post-Newtonian order modifications for the first time. The obtained constraint on CS gravity is consistent with the results in previous works. On the other hand, the constraint on the CNCL model that we obtain is tighter than the previous results by roughly 7 orders of magnitude.
Gravitational wave (GW) echoes, if they exist, would be a probe to the near-horizon physics of black hole. In this brief report, we performed the Monte Carlo Markov Chain analysis to search for echo signal in all GWTC-1 and O3 GW events. We focus on
We consider gravitational waves (GWs) in generic parity-violating gravity including recently proposed ghost-free theories with parity violation as well as Chern-Simons (CS) modified gravity, and study the implications of observational constraints fro
Gravitational wave (GW) data can be used to test the parity symmetry of gravity by investigating the difference between left-hand and right-hand circular polarization modes. In this article, we develop a method to decompose the circular polarizations
We perform a new test of general relativity (GR) with signals from GWTC-2, the LIGO and Virgo catalog of gravitational wave detections. We search for the presence of amplitude birefringence, in which left versus right circularly polarized modes of gr
We show that the ghost degrees of freedom of Einstein gravity with a Weyl term can be eliminated by a simple mechanism that invokes local Lorentz symmetry breaking. We demonstrate how the mechanism works in a cosmological setting. The presence of the