ﻻ يوجد ملخص باللغة العربية
We perform a new test of general relativity (GR) with signals from GWTC-2, the LIGO and Virgo catalog of gravitational wave detections. We search for the presence of amplitude birefringence, in which left versus right circularly polarized modes of gravitational waves are exponentially enhanced and suppressed during propagation. Such an effect is present in various beyond-GR theories but is absent in GR. We constrain the amount of amplitude birefringence consistent with the data through an opacity parameter $kappa$, which we bound to be $kappa lesssim 0.74 textrm{ Gpc}^{-1}$. We then use these theory-agnostic results to constrain Chern-Simons gravity, a beyond-GR theory with motivations in quantum gravity. We bound the canonical Chern-Simons lengthscale to be $ell_0 lesssim 1.0 times 10^3$ km, improving on previous long-distance measurement results by a factor of two.
In this paper, we consider dynamical Chern-Simons gravity with the identification of the scalar field coupled though the Pontryagin density with the axion dark matter, and we discuss the effects of the parametric resonance on gravitational waves (GWs
Primordial black holes (PBHs) might be formed in the early Universe and could comprise at least a fraction of the dark matter. Using the recently released GWTC-2 dataset from the third observing run of the LIGO-Virgo Collaboration, we investigate whe
The gravitational memory effects of Chern-Simons modified gravity are considered in the asymptotically flat spacetime. If the Chern-Simons scalar does not directly couple with the ordinary matter fields, there are also displacement, spin and center-o
We produce the first numerical relativity binary black hole gravitational waveforms in a higher-curvature theory beyond general relativity. In particular, we study head-on collisions of binary black holes in order-reduced dynamical Chern-Simons gravi
Gravitational wave (GW) echoes, if they exist, would be a probe to the near-horizon physics of black hole. In this brief report, we performed the Monte Carlo Markov Chain analysis to search for echo signal in all GWTC-1 and O3 GW events. We focus on