ترغب بنشر مسار تعليمي؟ اضغط هنا

Regular-Triangle Trimer and Charge Order Preserving the Anderson Condition in the Pyrochlore Structure of CsW$_2$O$_6$

158   0   0.0 ( 0 )
 نشر من قبل Yoshihiko Okamoto
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the discovery of the Verwey transition in magnetite, transition metal compounds with pyrochlore structures have been intensively studied as a platform for realizing remarkable electronic phase transitions. We report the discovery of a unique phase transition that preserves the cubic symmetry of the beta-pyrochlore oxide CsW$_2$O$_6$, where each of W 5d electrons are confined in regular-triangle W3 trimers. This trimer formation is an unprecedented self-organization of d electrons, which can be resolved into a charge order satisfying the Anderson condition in a nontrivial way, orbital order caused by the distortion of WO6 octahedra, and the formation of a spin-singlet pair in a regular-triangle trimer. Electronic instability due to the unusual three-dimensional nesting of Fermi surfaces and the localized nature of the 5d electrons characteristic of the pyrochlore oxides were found to play important roles in this unique charge-orbital-spin coupled phenomenon.

قيم البحث

اقرأ أيضاً

We report on the evolution of the thermal metal-insulator transition in polycrystalline samples of Nd$_2$Ir$_2$O$_7$ upon hole-doping via substitution of Ca$^{2+}$ for Nd$^{3+}$. Ca substitution mediates a filling-controlled Mott-like transition with minimal resolvable structural changes and without altering site symmetry. Local structure confirms that Ca substitution does not result in local chemical phase separation, and absorption spectroscopy establishes that Ir cations maintain a spin-orbit entangled electronic configuration. The metal-insulator transition coincides with antiferromagnetic ordering on the Ir sublattice for all measured samples, and both decrease in onset temperature with Ca content. Weak low-temperature upturns in susceptibility and resistivity for samples with high Ca content suggest that Nd sublattice antiferromagnetism continues to couple to carriers in the metallic regime.
The electronic and magnetic properties of clinopyroxene CaMnGe$_2$O$_6$ were studied using density function calculations within the GGA+U approximation. It is shown that anomalous ferromagnetic ordering of neighboring chains is due to a common-enemy mechanism. Two antiferromagnetic exchange couplings between nearest neighbours within the Mn-Mn chain and interchain coupling via two GeO$_4$ tetrahedra suppress antiferromagnetic exchange via single GeO$_4$ tetrahedron and stabilize ferromagnetic ordering of Mn chains.
Both amorphous and crystalline materials frequently exhibit low temperature specific heats in excess of what is predicted using the Debye model. The signature of this excess specific heat is a peak observed in $C/T^3$ textit{versus} $T$. To understan d the curious absence of long-range ordering of local distortions in the crystal structure of pyrochlore Bi$_2$Ti$_2$O$_7$, we have measured the specific heat of crystalline Bi$_2$Ti$_2$O$_7$ and related compounds. We find that the peak in $C/T^3$ versus $T$ in Bi$_2$Ti$_2$O$_7$ falls at a substantially lower temperature than other similar compounds, consistent with the presence of disorder. This thermodynamic evidence for disorder in crystalline Bi$_2$Ti$_2$O$_7$ is consistent with quenched configurational disorder among Bi lone pairs produced by geometrical frustration, which could represent a possible realization of charge ice.
Microwave penetration depth $lambda$ and surface resistance at 27 GHz are measured in high quality crystals of KOs$_2$O$_6$. Firm evidence for fully-gapped superconductivity is provided from $lambda(T)$. Below the second transition at $T_{rm p}sim 8$ K, the superfluid density shows a step-like change with a suppression of effective critical temperature $T_{rm c}$. Concurrently, the extracted quasiparticle scattering time shows a steep enhancement, indicating a strong coupling between the anomalous rattling motion of K ions and quasiparticles. The results imply that the rattling phonons help to enhance superconductivity, and that K sites freeze to an ordered state with long quasiparticle mean free path below $T_{rm p}$.
Single crystals of the three-dimensional frustrated magnet and spin liquid candidate compound PbCuTe$_2$O$_6$, were grown using both the Travelling Solvent Floating Zone (TSFZ) and the Top-Seeded Solution Growth (TSSG) techniques. The growth conditio ns were optimized by investigating the thermal properties. The quality of the crystals was checked by polarized optical microscopy, X-ray Laue and X-ray powder diffraction, and compared to the polycrystalline samples. Excellent quality crystals were obtained by the TSSG method. Magnetic measurements of these crystals revealed a small anisotropy for different crystallographic directions in comparison with the previously reported data. The heat capacity of both single crystal and powder samples reveal a transition anomaly around 1~K. Curiously the position and magnitude of the transition are strongly dependent on the crystallite size and it is almost entirely absent for the smallest crystallites. A structural transition is suggested which accompanies the reported ferroelectric transition, and a scenario whereby it becomes energetically unfavourable in small crystallites is proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا