ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery of highly-polarizable semiconductors BaZrS3 and Ba3Zr2S7

68   0   0.0 ( 0 )
 نشر من قبل Stephen Filippone
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Stephen Filippone




اسأل ChatGPT حول البحث

There are few known semiconductors exhibiting both strong optical response and large dielectric polarizability. Inorganic materials with large dielectric polarizability tend to be wide-band gap complex oxides. Semiconductors with strong photoresponse to visible and infrared light tend to be weakly polarizable. Interesting exceptions to these trends are halide perovskites and phase-change chalcogenides. Here we introduce complex chalcogenides in the Ba-Zr-S system in perovskite and Ruddlesden-Popper structures as a new family of highly polarizable semiconductors. We report the results of impedance spectroscopy on single crystals that establish BaZrS3 and Ba3Zr2S7 as semiconductors with low-frequency relative dielectric constant (${epsilon}_0$) in the range 50 - 100, and band gap in the range 1.3 - 1.8 eV. Our electronic structure calculations indicate the enhanced dielectric response in perovskite BaZrS3 versus Ruddlesden-Popper Ba3Zr2S7 is primarily due to enhanced IR mode-effective charges, and variations in phonon frequencies along $langle 001 rangle$; differences in the Born effective charges and the lattice stiffness are of secondary importance. This combination of covalent bonding in crystal structures more common to complex oxides results in a sizable Frohlich coupling constant, which suggests that charge carriers are large polarons.

قيم البحث

اقرأ أيضاً

The dielectric response of materials underpins electronics and photonics. Established semiconductor materials have a narrow range of dielectric susceptibility, with low-frequency values on the order of 10. Strong and variable dielectric response in w ide-band gap materials is associated with complex crystal structures and heavier elements. Based on underlying chemical trends, we hypothesize that chalcogenides in crystal structures common to complex oxides may feature many highly-polarizable semiconductors. Research on these materials is motivated by fundamental inquiry into electrons and phonons in solids, and by potential applications in photonics, high-frequency communications, and photovoltaics.
110 - Hitarth Choubisa 2021
Machine learning models of materials$^{1-5}$ accelerate discovery compared to ab initio methods: deep learning models now reproduce density functional theory (DFT)-calculated results at one hundred thousandths of the cost of DFT$^{6}$. To provide gui dance in experimental materials synthesis, these need to be coupled with an accurate yet effective search algorithm and training data consistent with experimental observations. Here we report an evolutionary algorithm powered search which uses machine-learned surrogate models trained on high-throughput hybrid functional DFT data benchmarked against experimental bandgaps: Deep Adaptive Regressive Weighted Intelligent Network (DARWIN). The strategy enables efficient search over the materials space of ~10$^8$ ternaries and 10$^{11}$ quaternaries$^{7}$ for candidates with target properties. It provides interpretable design rules, such as our finding that the difference in the electronegativity between the halide and B-site cation being a strong predictor of ternary structural stability. As an example, when we seek UV emission, DARWIN predicts K$_2$CuX$_3$ (X = Cl, Br) as a promising materials family, based on its electronegativity difference. We synthesized and found these materials to be stable, direct bandgap UV emitters. The approach also allows knowledge distillation for use by humans.
In this paper, we present a collection of results focussing on the transport properties of doped direct-gap inverted-band highly polar III-nitride semiconductors (GaN, AlN, InN) and GaAs in the transient and steady state, calculated by using nonlinea r quantum kinetic theory based on a non-equilibrium statistical ensemble formalism (NESEF). In the present paper, these results are compared with calculations usingMonteCarlo modelling simulations and experimental measurements. Both n-type and p-type materials, in the presence of intermediate to high electric fields, are considered for several temperatures and carrier concentrations.The agreement between the results obtained using nonlinear quantum kinetic theory, with those ofMonte Carlo calculations and experimental data is remarkably good, thus satisfactorily validating the NESEF.
BaZrS3, a prototypical chalcogenide perovskite, has been shown to possess a direct band gap, an exceptionally strong near band edge light absorption, and good carrier transport. Coupled with its great stability, non-toxicity with earth abundant eleme nts, it is thus a promising candidate for thin film solar cells. However, its reported band gap in the range of 1.7-1.8 eV is larger than the optimal value required to reach the Shockley-Queisser limit of a single junction solar cell. Here we report the synthesis of Ba(Zr1-xTix)S3 perovskite compounds with a reduced band gap. It is found that Ti alloying is extremely effective in band gap reduction of BaZrS3: a mere 4 at% alloying decreases the band gap from 1.78 to 1.51 eV, resulting in a theoretical maximum power conversion efficiency of 32%. Higher Ti-alloying concentration is found to destabilize the distorted chalcogenide perovskite phase.
BaZrS3 is a prototypical chalcogenide perovskite, an emerging class of unconventional semiconductor. Recent results on powder samples reveal that it is a material with a direct band gap of 1.7-1.8 eV, a very strong light-matter interaction, and a hig h chemical stability. However, many of the fundamental properties are unknown, hindering the ability to apply BaZrS3 for optoelectronics. Here we report the fabrication of BaZrS3 thin films, by sulfurization of oxide films deposited by pulsed laser deposition. We show that these films are n-type with carrier densities in the range of 10^19-10^20 cm^-3. Depending on the processing temperature, the Hall mobility ranges from 2.1 to 13.7 cm^2/Vs. The absorption coefficient is > 10^5 cm-1 at photon energy > 1.97 eV. Temperature dependent conductivity measurements suggest shallow donor levels. These results assure that BaZrS3 is a promising candidate for optoelectronics such as photodetectors, photovoltaics, and light emitting diodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا