ﻻ يوجد ملخص باللغة العربية
This paper provides full classification of dynamics for continuous time Markov chains (CTMCs) on the non-negative integers with polynomial transition rate functions. Such stochastic processes are abundant in applications, in particular in biology. More precisely, for CTMCs of bounded jumps, we provide necessary and sufficient conditions in terms of calculable parameters for explosivity, recurrence vs transience, certain absorption, positive recurrence vs null recurrence, and implosivity. Simple sufficient conditions for exponential ergodicity of stationary distributions and quasi-stationary distributions as well as existence and non-existence of moments of hitting times are also obtained. Similar simple sufficient conditions for the aforementioned dynamics together with their opposite dynamics are established for CTMCs with unbounded jumps. The results generalize respective criteria for birth-death processes by Karlin and McGregor in the 1960s. Finally, we apply our results to stochastic reaction networks, an extended class of branching processes, a general bursty single-cell stochastic gene expression model, and population processes, none of which are birth-death processes. The approach is based on a mixture of Lyapunov-Foster type results, semimartingale approach, as well as estimates of stationary measures.
This paper contributes an in-depth study of properties of continuous time Markov chains (CTMCs) on non-negative integer lattices $N_0^d$, with particular interest in one-dimensional CTMCs with polynomial transitions rates. Such stochastic processes a
This paper is motivated by demands in stochastic reaction network theory. The $Q$-matrix of a stochastic reaction network can be derived from the reaction graph, an edge-labelled directed graph encoding the jump vectors of an associated continuous ti
Continuous-time Markov chains are mathematical models that are used to describe the state-evolution of dynamical systems under stochastic uncertainty, and have found widespread applications in various fields. In order to make these models computation
We consider continuous-time Markov chains on integers which allow transitions to adjacent states only, with alternating rates. We give explicit formulas for probability generating functions, and also for means, variances and state probabilities of th
We study certain properties of the function space of autocorrelation functions of Unit Continuous Time Markov Chains (CTMCs). It is shown that under particular conditions, the $L^p$ norm of the autocorrelation function of arbitrary finite state space