ترغب بنشر مسار تعليمي؟ اضغط هنا

MMCGAN: Generative Adversarial Network with Explicit Manifold Prior

291   0   0.0 ( 0 )
 نشر من قبل Guanhua Zheng
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Generative Adversarial Network(GAN) provides a good generative framework to produce realistic samples, but suffers from two recognized issues as mode collapse and unstable training. In this work, we propose to employ explicit manifold learning as prior to alleviate mode collapse and stabilize training of GAN. Since the basic assumption of conventional manifold learning fails in case of sparse and uneven data distribution, we introduce a new target, Minimum Manifold Coding (MMC), for manifold learning to encourage simple and unfolded manifold. In essence, MMC is the general case of the shortest Hamiltonian Path problem and pursues manifold with minimum Riemann volume. Using the standardized code from MMC as prior, GAN is guaranteed to recover a simple and unfolded manifold covering all the training data. Our experiments on both the toy data and real datasets show the effectiveness of MMCGAN in alleviating mode collapse, stabilizing training, and improving the quality of generated samples.



قيم البحث

اقرأ أيضاً

Recently proposed adversarial training methods show the robustness to both adversarial and original examples and achieve state-of-the-art results in supervised and semi-supervised learning. All the existing adversarial training methods consider only how the worst perturbed examples (i.e., adversarial examples) could affect the model output. Despite their success, we argue that such setting may be in lack of generalization, since the output space (or label space) is apparently less informative.In this paper, we propose a novel method, called Manifold Adversarial Training (MAT). MAT manages to build an adversarial framework based on how the worst perturbation could affect the distributional manifold rather than the output space. Particularly, a latent data space with the Gaussian Mixture Model (GMM) will be first derived.On one hand, MAT tries to perturb the input samples in the way that would rough the distributional manifold the worst. On the other hand, the deep learning model is trained trying to promote in the latent space the manifold smoothness, measured by the variation of Gaussian mixtures (given the local perturbation around the data point). Importantly, since the latent space is more informative than the output space, the proposed MAT can learn better a robust and compact data representation, leading to further performance improvement. The proposed MAT is important in that it can be considered as a superset of one recently-proposed discriminative feature learning approach called center loss. We conducted a series of experiments in both supervised and semi-supervised learning on three benchmark data sets, showing that the proposed MAT can achieve remarkable performance, much better than those of the state-of-the-art adversarial approaches. We also present a series of visualization which could generate further understanding or explanation on adversarial examples.
103 - Zhe Gan , Liqun Chen , Weiyao Wang 2017
A Triangle Generative Adversarial Network ($Delta$-GAN) is developed for semi-supervised cross-domain joint distribution matching, where the training data consists of samples from each domain, and supervision of domain correspondence is provided by o nly a few paired samples. $Delta$-GAN consists of four neural networks, two generators and two discriminators. The generators are designed to learn the two-way conditional distributions between the two domains, while the discriminators implicitly define a ternary discriminative function, which is trained to distinguish real data pairs and two kinds of fake data pairs. The generators and discriminators are trained together using adversarial learning. Under mild assumptions, in theory the joint distributions characterized by the two generators concentrate to the data distribution. In experiments, three different kinds of domain pairs are considered, image-label, image-image and image-attribute pairs. Experiments on semi-supervised image classification, image-to-image translation and attribute-based image generation demonstrate the superiority of the proposed approach.
In this paper we propose a data augmentation method for time series with irregular sampling, Time-Conditional Generative Adversarial Network (T-CGAN). Our approach is based on Conditional Generative Adversarial Networks (CGAN), where the generative s tep is implemented by a deconvolutional NN and the discriminative step by a convolutional NN. Both the generator and the discriminator are conditioned on the sampling timestamps, to learn the hidden relationship between data and timestamps, and consequently to generate new time series. We evaluate our model with synthetic and real-world datasets. For the synthetic data, we compare the performance of a classifier trained with T-CGAN-generated data, against the performance of the same classifier trained on the original data. Results show that classifiers trained on T-CGAN-generated data perform the same as classifiers trained on real data, even with very short time series and small training sets. For the real world datasets, we compare our method with other techniques of data augmentation for time series, such as time slicing and time warping, over a classification problem with unbalanced datasets. Results show that our method always outperforms the other approaches, both in case of regularly sampled and irregularly sampled time series. We achieve particularly good performance in case with a small training set and short, noisy, irregularly-sampled time series.
Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples ($x$) conditioned on both latent variables ($z$) and known auxiliary information ($c$). We propose the Bidirectional cGAN (BiCoGAN), which effecti vely disentangles $z$ and $c$ in the generation process and provides an encoder that learns inverse mappings from $x$ to both $z$ and $c$, trained jointly with the generator and the discriminator. We present crucial techniques for training BiCoGANs, which involve an extrinsic factor loss along with an associated dynamically-tuned importance weight. As compared to other encoder-based cGANs, BiCoGANs encode $c$ more accurately, and utilize $z$ and $c$ more effectively and in a more disentangled way to generate samples.
Generative models are undoubtedly a hot topic in Artificial Intelligence, among which the most common type is Generative Adversarial Networks (GANs). These architectures let one synthesise artificial datasets by implicitly modelling the underlying pr obability distribution of a real-world training dataset. With the introduction of Conditional GANs and their variants, these methods were extended to generating samples conditioned on ancillary information available for each sample within the dataset. From a practical standpoint, however, one might desire to generate data conditioned on partial information. That is, only a subset of the ancillary conditioning variables might be of interest when synthesising data. In this work, we argue that standard Conditional GANs are not suitable for such a task and propose a new Adversarial Network architecture and training strategy to deal with the ensuing problems. Experiments illustrating the value of the proposed approach in digit and face image synthesis under partial conditioning information are presented, showing that the proposed method can effectively outperform the standard approach under these circumstances.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا