ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Visual Commonsense for Robust Scene Graph Generation

103   0   0.0 ( 0 )
 نشر من قبل Alireza Zareian
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Scene graph generation models understand the scene through object and predicate recognition, but are prone to mistakes due to the challenges of perception in the wild. Perception errors often lead to nonsensical compositions in the output scene graph, which do not follow real-world rules and patterns, and can be corrected using commonsense knowledge. We propose the first method to acquire visual commonsense such as affordance and intuitive physics automatically from data, and use that to improve the robustness of scene understanding. To this end, we extend Transformer models to incorporate the structure of scene graphs, and train our Global-Local Attention Transformer on a scene graph corpus. Once trained, our model can be applied on any scene graph generation model and correct its obvious mistakes, resulting in more semantically plausible scene graphs. Through extensive experiments, we show our model learns commonsense better than any alternative, and improves the accuracy of state-of-the-art scene graph generation methods.



قيم البحث

اقرأ أيضاً

137 - Yuan Yao , Ao Zhang , Xu Han 2021
Scene graph generation aims to identify objects and their relations in images, providing structured image representations that can facilitate numerous applications in computer vision. However, scene graph models usually require supervised learning on large quantities of labeled data with intensive human annotation. In this work, we propose visual distant supervision, a novel paradigm of visual relation learning, which can train scene graph models without any human-labeled data. The intuition is that by aligning commonsense knowledge bases and images, we can automatically create large-scale labeled data to provide distant supervision for visual relation learning. To alleviate the noise in distantly labeled data, we further propose a framework that iteratively estimates the probabilistic relation labels and eliminates the noisy ones. Comprehensive experimental results show that our distantly supervised model outperforms strong weakly supervised and semi-supervised baselines. By further incorporating human-labeled data in a semi-supervised fashion, our model outperforms state-of-the-art fully supervised models by a large margin (e.g., 8.3 micro- and 7.8 macro-recall@50 improvements for predicate classification in Visual Genome evaluation). We make the data and code for this paper publicly available at https://github.com/thunlp/VisualDS.
224 - Keren Ye , Adriana Kovashka 2021
Prior work in scene graph generation requires categorical supervision at the level of triplets - subjects and objects, and predicates that relate them, either with or without bounding box information. However, scene graph generation is a holistic tas k: thus holistic, contextual supervision should intuitively improve performance. In this work, we explore how linguistic structures in captions can benefit scene graph generation. Our method captures the information provided in captions about relations between individual triplets, and context for subjects and objects (e.g. visual properties are mentioned). Captions are a weaker type of supervision than triplets since the alignment between the exhaustive list of human-annotated subjects and objects in triplets, and the nouns in captions, is weak. However, given the large and diverse sources of multimodal data on the web (e.g. blog posts with images and captions), linguistic supervision is more scalable than crowdsourced triplets. We show extensive experimental comparisons against prior methods which leverage instance- and image-level supervision, and ablate our method to show the impact of leveraging phrasal and sequential context, and techniques to improve localization of subjects and objects.
83 - Xuan Kan , Hejie Cui , Carl Yang 2021
Relation prediction among entities in images is an important step in scene graph generation (SGG), which further impacts various visual understanding and reasoning tasks. Existing SGG frameworks, however, require heavy training yet are incapable of m odeling unseen (i.e.,zero-shot) triplets. In this work, we stress that such incapability is due to the lack of commonsense reasoning,i.e., the ability to associate similar entities and infer similar relations based on general understanding of the world. To fill this gap, we propose CommOnsense-integrAted sCenegrapHrElation pRediction (COACHER), a framework to integrate commonsense knowledge for SGG, especially for zero-shot relation prediction. Specifically, we develop novel graph mining pipelines to model the neighborhoods and paths around entities in an external commonsense knowledge graph, and integrate them on top of state-of-the-art SGG frameworks. Extensive quantitative evaluations and qualitative case studies on both original and manipulated datasets from Visual Genome demonstrate the effectiveness of our proposed approach.
Relations amongst entities play a central role in image understanding. Due to the complexity of modeling (subject, predicate, object) relation triplets, it is crucial to develop a method that can not only recognize seen relations, but also generalize to unseen cases. Inspired by a previously proposed visual translation embedding model, or VTransE, we propose a context-augmented translation embedding model that can capture both common and rare relations. The previous VTransE model maps entities and predicates into a low-dimensional embedding vector space where the predicate is interpreted as a translation vector between the embedded features of the bounding box regions of the subject and the object. Our model additionally incorporates the contextual information captured by the bounding box of the union of the subject and the object, and learns the embeddings guided by the constraint predicate $approx$ union (subject, object) $-$ subject $-$ object. In a comprehensive evaluation on multiple challenging benchmarks, our approach outperforms previous translation-based models and comes close to or exceeds the state of the art across a range of settings, from small-scale to large-scale datasets, from common to previously unseen relations. It also achieves promising results for the recently introduced task of scene graph generation.
Generating realistic images of complex visual scenes becomes challenging when one wishes to control the structure of the generated images. Previous approaches showed that scenes with few entities can be controlled using scene graphs, but this approac h struggles as the complexity of the graph (the number of objects and edges) increases. In this work, we show that one limitation of current methods is their inability to capture semantic equivalence in graphs. We present a novel model that addresses these issues by learning canonical graph representations from the data, resulting in improved image generation for complex visual scenes. Our model demonstrates improved empirical performance on large scene graphs, robustness to noise in the input scene graph, and generalization on semantically equivalent graphs. Finally, we show improved performance of the model on three different benchmarks: Visual Genome, COCO, and CLEVR.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا