ﻻ يوجد ملخص باللغة العربية
We analyze a coin-based game with two players where, before starting the game, each player selects a string of length $n$ comprised of coin tosses. They alternate turns, choosing the outcome of a coin toss according to specific rules. As a result, the game is deterministic. The player whose string appears first wins. If neither players string occurs, then the game must be infinite. We study several aspects of this game. We show that if, after $4n-4$ turns, the game fails to cease, it must be infinite. Furthermore, we examine how a player may select their string to force a desired outcome. Finally, we describe the result of the game for particular cases.
A tournament H is quasirandom-forcing if the following holds for every sequence (G_n) of tournaments of growing orders: if the density of H in G_n converges to the expected density of H in a random tournament, then (G_n) is quasirandom. Every transit
Alon and Yuster proved that the number of orientations of any $n$-vertex graph in which every $K_3$ is transitively oriented is at most $2^{lfloor n^2/4rfloor}$ for $n geq 10^4$ and conjectured that the precise lower bound on $n$ should be $n geq 8$.
A word is square-free if it does not contain any square (a word of the form $XX$), and is extremal square-free if it cannot be extended to a new square-free word by inserting a single letter at any position. Grytczuk, Kordulewski, and Niewiadomski pr
Motivated by a biological scenario illustrated in the YouTube video url{ https://www.youtube.com/watch?v=Z_mXDvZQ6dU} where a neutrophil chases a bacteria cell moving in random directions, we present a variant of the cop and robber game on graphs cal
Let $S_k(n)$ be the maximum number of orientations of an $n$-vertex graph $G$ in which no copy of $K_k$ is strongly connected. For all integers $n$, $kgeq 4$ where $ngeq 5$ or $kgeq 5$, we prove that $S_k(n) = 2^{t_{k-1}(n)}$, where $t_{k-1}(n)$ is t