ﻻ يوجد ملخص باللغة العربية
Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous transport and x-ray diffraction measurements with in-situ tunable strain (elasto-XRD) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of $Ba(Fe_{0.96}Co_{0.04})_{2} As_{2}$. The ratio of transport to structural quantities is nearly temperature-independent over a 74 K range and agrees between the ordered and disordered phases. These results show that elasto-XRD is a powerful technique to probe the nemato-elastic and nemato-transport couplings, which have important implications to the nearby superconductivity. It also enables the measurement in the large strain limit, where the breakdown of mean field description reveals the intertwined nature of nematicity.
The distribution of chemically similar transition-metal ions is a fundamental issue in the study of herbertsmithite-type kagome antiferromagnets. Using synchrotron radiation, we have performed resonant powder x-ray diffractions on newly synthesized C
Pressure-dependent transport measurements of Ir$_{1-x}$Pt$_x$Te$_2$ are reported. With increasing pressure, the structural phase transition at high temperatures is enhanced while its superconducting transition at low temperatures is suppressed. These
Vanadium dioxide (VO2) is a model system that has been used to understand closely-occurring multiband electronic (Mott) and structural (Peierls) transitions for over half a century due to continued scientific and technological interests. Among the ma
We report on the study of a magnetic dislocation in pure chromium. Coherent x-ray diffraction profiles obtained on the incommensurate Spin Density Wave (SDW) reflection are consistent with the presence of a dislocation of the magnetic order, embedded
CeB6, a typical Gamma_8-quartet system, exhibits a mysterious antiferroquadrupolar ordered phase in magnetic fields, which is considered as originating from the T_{xyz}-type magnetic octupole moment induced by the field. By resonant x-ray diffraction