ﻻ يوجد ملخص باللغة العربية
Vanadium dioxide (VO2) is a model system that has been used to understand closely-occurring multiband electronic (Mott) and structural (Peierls) transitions for over half a century due to continued scientific and technological interests. Among the many techniques used to study VO2, the most frequently used involve electromagnetic radiation as a probe. Understanding of the distinct physical information provided by different probing radiations is incomplete, mostly owing to the complicated nature of the phase transitions. Here we use transmission of spatially averaged infrared ({lambda}=1500 nm) and visible ({lambda}=500 nm) radiations followed by spectroscopy and nanoscale imaging using x-rays ({lambda}=2.25-2.38 nm) to probe the same VO2 sample while controlling the ambient temperature across its hysteretic phase transitions and monitoring its electrical resistance. We directly observed nanoscale puddles of distinct electronic and structural compositions during the transition. The two main results are that, during both heating and cooling, the transition of infrared and visible transmission occur at significantly lower temperatures than the Mott transition; and the electronic (Mott) transition occurs before the structural (Peierls) transition in temperature. We use our data to provide insights into possible microphysical origins of the different transition characteristics. We highlight that it is important to understand these effects because small changes in the nature of the probe can yield quantitatively, and even qualitatively, different results when applied to a non-trivial multiband phase transition. Our results guide more judicious use of probe type and interpretation of the resulting data.
Magnetic topological defects are energetically stable spin configurations characterized by symmetry breaking. Vortices and skyrmions are two well-known examples of 2D spin textures that have been actively studied for both fundamental interest and pra
Results from transport measurements in individual $W_{x}V_{1-x}O_{2}$ nanowires with varying extents of $W$ doping are presented. An abrupt thermally driven metal-insulator transition (MIT) is observed in these wires and the transition temperature de
Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-ins
The spin relaxation time in solids is determined by several competing energy scales and processes and distinct methods are called for to analyze the various regimes. We present a stochastic model for the spin dynamics in solids which is equivalent to
Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous t