ترغب بنشر مسار تعليمي؟ اضغط هنا

The phase transition in VO2 probed using x-ray, visible and infrared radiations

101   0   0.0 ( 0 )
 نشر من قبل Suhas Kumar
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Vanadium dioxide (VO2) is a model system that has been used to understand closely-occurring multiband electronic (Mott) and structural (Peierls) transitions for over half a century due to continued scientific and technological interests. Among the many techniques used to study VO2, the most frequently used involve electromagnetic radiation as a probe. Understanding of the distinct physical information provided by different probing radiations is incomplete, mostly owing to the complicated nature of the phase transitions. Here we use transmission of spatially averaged infrared ({lambda}=1500 nm) and visible ({lambda}=500 nm) radiations followed by spectroscopy and nanoscale imaging using x-rays ({lambda}=2.25-2.38 nm) to probe the same VO2 sample while controlling the ambient temperature across its hysteretic phase transitions and monitoring its electrical resistance. We directly observed nanoscale puddles of distinct electronic and structural compositions during the transition. The two main results are that, during both heating and cooling, the transition of infrared and visible transmission occur at significantly lower temperatures than the Mott transition; and the electronic (Mott) transition occurs before the structural (Peierls) transition in temperature. We use our data to provide insights into possible microphysical origins of the different transition characteristics. We highlight that it is important to understand these effects because small changes in the nature of the probe can yield quantitatively, and even qualitatively, different results when applied to a non-trivial multiband phase transition. Our results guide more judicious use of probe type and interpretation of the resulting data.



قيم البحث

اقرأ أيضاً

Magnetic topological defects are energetically stable spin configurations characterized by symmetry breaking. Vortices and skyrmions are two well-known examples of 2D spin textures that have been actively studied for both fundamental interest and pra ctical applications. However, experimental evidence of the 3D spin textures has been largely indirect or qualitative to date, due to the difficulty of quantitively characterizing them within nanoscale volumes. Here, we develop soft x-ray vector ptychography to quantitatively image the 3D magnetization vector field in a frustrated superlattice with 10 nm spatial resolution. By applying homotopy theory to the experimental data, we quantify the topological charge of hedgehogs and anti-hedgehogs as emergent magnetic monopoles and probe their interactions inside the frustrated superlattice. We also directly observe virtual hedgehogs and anti-hedgehogs created by magnetically inert voids. We expect that this new quantitative imaging method will open the door to study 3D topological spin textures in a broad class of magnetic materials. Our work also demonstrates that magnetically frustrated superlattices could be used as a new platform to investigate hedgehog interactions and dynamics and to exploit optimized geometries for information storage and transport applications.
Results from transport measurements in individual $W_{x}V_{1-x}O_{2}$ nanowires with varying extents of $W$ doping are presented. An abrupt thermally driven metal-insulator transition (MIT) is observed in these wires and the transition temperature de creases with increasing $W$ content at a pronounced rate of - (48-56) K/$at.%W$, suggesting a significant alteration of the phase diagram from the bulk. These nanowires can also be driven through a voltage-driven MIT and the temperature dependence of the insulator to metal and metal to insulator switchings are studied. While driving from an insulator to metal, the threshold voltage at which the MIT occurs follows an exponential temperature dependence ($V_{THuparrow}proptoexp( icefrac{-T}{T_{0}})) $whereas driving from a metal to insulator, the threshold voltage follows $V_{THdownarrow}proptosqrt{T_{c}-T}$ and the implications of these results are discussed.
Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-ins ulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is an intrinsic local property, set by surface morphology and stable across multiple temperature cycles. Our data provides new insights into the MIT of heteroepitaxial nickelates and points to a rich, nanoscale phenomenology in this strongly correlated material.
416 - G. Csosz , L. Szolnoki , A. Kiss 2019
The spin relaxation time in solids is determined by several competing energy scales and processes and distinct methods are called for to analyze the various regimes. We present a stochastic model for the spin dynamics in solids which is equivalent to solving the spin Boltzmann equation and takes the relevant processes into account on equal footing. The calculations reveal yet unknown parts of the spin-relaxation phase diagram, where strong spin-dephasing occurs in addition to spin-relaxation. Spin-relaxation times are obtained for this regime by introducing the numerical Loschmidt echo. This allows us to construct a generic approximate formula for the spin-relaxation time, $tau_{text{s}}$, for the entire phase diagram, involving the quasiparticle scattering rate, $Gamma$, spin-orbit coupling strength, $mathcal{L}$, and a magnetic term, $Delta_{text{Z}}$ due to the Zeeman effect. The generic expression reads as $hbar/tau_{text{s}}approx Gammacdot mathcal{L}^2 /(Gamma^2+mathcal{L}^2+Delta_{text{Z}}^2)$.
Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous t ransport and x-ray diffraction measurements with in-situ tunable strain (elasto-XRD) to measure the temperature dependence of the shear modulus and elastoresistivity above the nematic transition and the spontaneous orthorhombicity and resistivity anisotropy below the nematic transition, all within a single sample of $Ba(Fe_{0.96}Co_{0.04})_{2} As_{2}$. The ratio of transport to structural quantities is nearly temperature-independent over a 74 K range and agrees between the ordered and disordered phases. These results show that elasto-XRD is a powerful technique to probe the nemato-elastic and nemato-transport couplings, which have important implications to the nearby superconductivity. It also enables the measurement in the large strain limit, where the breakdown of mean field description reveals the intertwined nature of nematicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا