ترغب بنشر مسار تعليمي؟ اضغط هنا

Empirical completeness assessment of the Gaia DR2, Pan-STARRS 1 and ASAS-SN-II RR Lyrae catalogues

91   0   0.0 ( 0 )
 نشر من قبل Cecilia Mateu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Cecilia Mateu




اسأل ChatGPT حول البحث

RR Lyrae stars are an important and widely used tracer of the most ancient populations of our Galaxy, mainly due to their standard candle nature. The availability of large scale surveys of variable stars is allowing us to trace the structure of our entire Galaxy, even in previously inaccessible areas like the Galactic disc. In this work we aim to provide an empirical assessment of the completeness of the three largest RR Lyrae catalogues available: Gaia DR2, PanSTARRS-1 and ASAS-SN-II. Using a joint probabilistic analysis of the three surveys we compute 2D and 3D completeness maps in each surveys full magnitude range. At the bright end (G<13) we find ASAS-SN-II and Gaia are near 100% complete in RRab at high latitude (|b|>20deg); ASAS-SN-II has the best completeness at low latitude for RRab and at all latitudes for RRc. At the faint end (G>13), Gaia DR2 is the most complete catalogue for both RR Lyrae types, at any latitude, with median completeness rates of 95% (RRab) and >85% (RRc) outside the ecliptic plane (|beta|>25deg). We confirm a high and uniform completeness of PanSTARRS-1 RR Lyrae at 91% (RRab) and 82% (RRc) down to G~18, and provide the first estimate of its completeness at low galactic latitude (|b|<20deg) at an estimated median 65% (RRab) and 50-60% (RRc). Our results are publicly available as 2D and 3D completeness maps, and as functions to evaluate each surveys completeness versus distance or per line-of sight.

قيم البحث

اقرأ أيضاً

Gaia DR2 published positions, parallaxes and proper motions for an unprecedented 1,331,909,727 sources, revolutionising the field of Galactic dynamics. We complement this data with the Astrometry Spread Function (ASF), the expected uncertainty in the measured positions, proper motions and parallax for a non-accelerating point source. The ASF is a Gaussian function for which we construct the 5D astrometric covariance matrix as a function of position on the sky and apparent magnitude using the Gaia DR2 scanning law and demonstrate excellent agreement with the observed data. This can be used to answer the question `What astrometric covariance would Gaia have published if my star was a non-accelerating point source?. The ASF will enable characterisation of binary systems, exoplanet orbits, astrometric microlensing events and extended sources which add an excess astrometric noise to the expected astrometry uncertainty. By using the ASF to estimate the unit weight error (UWE) of Gaia DR2 sources, we demonstrate that the ASF indeed provides a direct probe of the excess source noise. We use the ASF to estimate the contribution to the selection function of the Gaia astrometric sample from a cut on astrometric_sigma5d_max showing high completeness for $G<20$ dropping to $<1%$ in underscanned regions of the sky for $G=21$. We have added an ASF module to the Python package SCANNINGLAW (https://github.com/gaiaverse/scanninglaw) through which users can access the ASF.
86 - P. Ramos , C. Mateu , T. Antoja 2020
The Sagittarius stream is one of the best tools that we currently have to estimate the mass and shape of our Galaxy. However, assigning membership and obtaining the phase-space distribution of the stars that form the tails is quite challenging. Our g oal is to produce a catalogue of RR Lyrae stars of Sagittarius and obtain an empiric measurement of the trends along the stream in sky position, distance and tangential velocities. We generate two initial samples from the Gaia DR2 RR Lyrae catalogue: one, selecting only the stars within pm20deg of the orbital plane of Sagittarius (Strip) and the other, the result of applying the Pole Count Map (nGC3) algorithm. We then use the model-independent, deterministic method developed in this work to remove most of the contamination by detecting and isolating the stream in distance and proper motions. The output is two empiric catalogues: the Strip sample (higher-completeness, lower-purity) which contains 11 677 stars, and the nGC3 sample (higher-purity, lower-completeness) with 6 608 stars. We characterise the changes along the stream in all the available dimensions, the 5 astrometric ones plus the metallicity, covering more than 2pi rad in the sky and obtain new estimates for the apocentres and the mean [Fe/H] of the RR Lyrae population. Also, we show the first map of the two components of the tangential velocity, thanks to the combination of distances and proper motions. Finally, we detect the bifurcation in the leading arm and report no significant difference between the two branches, either in metallicity, kinematics or distance. We provide the largest sample of RR Lyrae candidates of Sagittarius, which can be used as an input for a spectroscopic follow-up or as a reference for the new generation of models of the stream through the interpolators in distance and velocity that we have constructed.
We analyze the kinematics and spatial distribution of 15,599 fundamental-mode RR Lyrae (RRL) stars in the Milky Way bulge by combining OGLE-IV photometric data and Gaia DR2 proper motions. We show that the longitudinal proper motions and the line-of- sight velocities can give similar results for the rotation in the Galactic central regions. The angular velocity of bulge RRLs is found to be around $35$ km s$^{-1}$ kpc$^{-1}$, significantly smaller than that for the majority of bulge stars ($50-60$ km s$^{-1}$ kpc$^{-1}$); bulge RRLs have larger velocity dispersion (120$-$140 km s$^{-1}$) than younger stars. The dependence of the kinematics of the bulge RRLs on their metallicities is shown by their rotation curves and spatial distributions. Metal-poor RRLs ([Fe/H]<$-1$) show a smaller bar angle than metal-rich ones. We also find clues suggesting that RRLs in the bulge are not dominated by halo stars. These results might explain some previous conflicting results over bulge RRLs and help understand the chemodynamical evolution of the Galactic bulge.
New data from the $textit{Gaia}$ satellite, when combined with accurate photometry from the Pan-STARRS survey, allow us to accurately estimate the properties of the GD-1 stream. Here, we analyze the stellar density perturbations in the GD-1 stream an d show that they cannot be due to known baryonic structures like giant molecular clouds, globular clusters, or the Milky Ways bar or spiral arms. A joint analysis of the GD-1 and Pal 5 streams instead requires a population of dark substructures with masses $approx 10^{7}$ to $10^9 M_{rm{odot}}$. We infer a total abundance of dark subhalos normalised to standard cold dark matter $n_{rm sub}/n_{rm sub, CDM} = 0.4 ^{+0.3}_{-0.2}$ ($68 %$), which corresponds to a mass fraction contained in the subhalos $f_{rm{sub}} = 0.14 ^{+0.11}_{-0.07} %$, compatible with the predictions of hydrodynamical simulation of cold dark matter with baryons.
The second Gaia data release is expected to contain data products from about 22 months of observation. Based on these data, we aim to provide an advance publication of a full-sky Gaia map of RR Lyrae stars. Although comprehensive, these data still co ntain a significant fraction of sources which are insufficiently sampled for Fourier series decomposition of the periodic light variations. The challenges in the identification of RR Lyrae candidates with (much) fewer than 20 field-of-view transits are described. General considerations of the results, their limitations, and interpretation are presented together with prospects for improvement in subsequent Gaia data releases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا