ترغب بنشر مسار تعليمي؟ اضغط هنا

All-sky RR Lyrae Stars in the Gaia Data

256   0   0.0 ( 0 )
 نشر من قبل Lorenzo Rimoldini
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The second Gaia data release is expected to contain data products from about 22 months of observation. Based on these data, we aim to provide an advance publication of a full-sky Gaia map of RR Lyrae stars. Although comprehensive, these data still contain a significant fraction of sources which are insufficiently sampled for Fourier series decomposition of the periodic light variations. The challenges in the identification of RR Lyrae candidates with (much) fewer than 20 field-of-view transits are described. General considerations of the results, their limitations, and interpretation are presented together with prospects for improvement in subsequent Gaia data releases.



قيم البحث

اقرأ أيضاً

We present results from the analysis of 401 RR Lyrae stars (RRLs) belonging to the field of the Milky Way (MW). For a fraction of them multi-band ($V$, $K_{rm s}$, $W1$) photometry, metal abundances, extinction values and pulsation periods are availa ble in the literature and accurate trigonometric parallaxes measured by the Gaia mission alongside Gaia $G$-band time-series photometry have become available with the Gaia second data release (DR2) on 2018 April 25. Using a Bayesian fitting approach we derive new near-, mid-infrared period-absolute magnitude-metallicity ($PMZ$) relations and new absolute magnitude-metallicity relations in the visual ($M_V - {rm [Fe/H]}$) and $G$ bands ($M_G - {rm [Fe/H]}$), based on the Gaia DR2 parallaxes. We find the dependence of luminosity on metallicity to be higher than usually found in the literature, irrespective of the passband considered. Running the adopted Bayesian model on a simulated dataset we show that the high metallicity dependence is not caused by the method, but likely arises from the actual distribution of the data and the presence of a zero-point offset in the Gaia parallaxes. We infer a zero-point offset of $-0.057$ mas, with the Gaia DR2 parallaxes being systematically smaller. We find the RR Lyrae absolute magnitude in the $V$, $G$, $K_{rm s}$ and $W1$ bands at metallicity of [Fe/H]=$-1.5$ dex and period of P = 0.5238 days, based on Gaia DR2 parallaxes to be $M_V = 0.66pm0.06$ mag, $M_G = 0.63pm0.08$ mag, $M_{K_{rm s}} = -0.37pm0.11$ mag and $M_{W1} = -0.41pm0.11$ mag, respectively.
More than half a million of the 1.69 billion sources in Gaia Data Release 2 (DR2) are published with photometric time series that exhibit light variations during the 22 months of observation. An all-sky classification of common high-amplitude pulsato rs (Cepheids, long-period variables, Delta Scuti / SX Phoenicis, and RR Lyrae stars) is provided for stars with brightness variations greater than 0.1 mag in G band. A semi-supervised classification approach was employed, firstly training multi-stage random forest classifiers with sources of known types in the literature, followed by a preliminary classification of the Gaia data and a second training phase that included a selection of the first classification results to improve the representation of some classes, before the improved classifiers were applied to the Gaia data. Dedicated validation classifiers were used to reduce the level of contamination in the published results. A relevant fraction of objects were not yet sufficiently sampled for reliable Fourier series decomposition, consequently classifiers were based on features derived from statistics of photometric time series in the G, BP, and RP bands, as well as from some astrometric parameters. The published classification results include 195,780 RR Lyrae stars, 150,757 long-period variables, 8550 Cepheids, and 8882 Delta Scuti / SX Phoenicis stars. All of these results represent candidates whose completeness and contamination are described as a function of variability type and classification reliability. Results are expressed in terms of class labels and classification scores, which are available in the vari_classifier_result table of the Gaia archive.
Parallaxes for 331 classical Cepheids, 31 Type II Cepheids and 364 RR Lyrae stars in common between Gaia and the Hipparcos and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS). In ord er to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, that involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity ($PL$), period-Wesenheit ($PW$) relations for classical and Type II Cepheids and infrared $PL$, $PL$-metallicity ($PLZ$) and optical luminosity-metallicity ($M_V$-[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS. The new relations were computed using multi-band ($V,I,J,K_{mathrm{s}},W_{1}$) photometry and spectroscopic metal abundances available in the literature, and applying three alternative approaches: (i) by linear least squares fitting the absolute magnitudes inferred from direct transformation of the TGAS parallaxes, (ii) by adopting astrometric-based luminosities, and (iii) using a Bayesian fitting approach. TGAS parallaxes bring a significant added value to the previous Hipparcos estimates. The relations presented in this paper represent first Gaia-calibrated relations and form a work-in-progress milestone report in the wait for Gaia-only parallaxes of which a first solution will become available with Gaias Data Release 2 (DR2) in 2018.
Classical double-mode pulsators (RR Lyrae stars and delta Cepheids) are important for their simultaneous pulsation in low-order radial modes. This enables us to put stringent constraints on their physical parameters. We use 30 bright galactic doubl e-mode RR~Lyrae (RRd) stars to estimate their luminosities and compare them with those derived from the parallaxes of the recent data release (EDR3) of the Gaia survey. We employ pulsation and evolutionary models, together with observationally determined effective temperatures to derive the basic stellar parameters. Excluding 6 outlying stars (e.g., with blending issues) the RRd and Gaia luminosities correlate well. With the adopted temperature zero point from one of the works based on the infrared flux method, we find it necessary to increase the Gaia parallaxes by 0.02 mas to bring the RRd and Gaia luminosities into agreement. This value is consonant with those derived from studies on binary stars in the context of Gaia. We examine also the resulting period-luminosity-metallicity (PLZ) relation in the 2MASS K band as follows from the RRd parameters. This leads to the verification of two independently derived other PLZs. No significant zero point differences are found. Furthermore, the predicted K absolute magnitudes agree within sigma=0.005-0.01mag.
106 - Emese Plachy , Robert Szabo 2020
The unprecedented photometric precision along with the quasi-continuous sampling provided by the Kepler space telescope revealed new and unpredicted phenomena that reformed and invigorated RR Lyrae star research. The discovery of period doubling and the wealth of low-amplitude modes enlightened the complexity of the pulsation behavior and guided us towards nonlinear and nonradial studies. Searching and providing theoretical explanation for these newly found phenomena became a central question, as well as understanding their connection to the oldest enigma of RR Lyrae stars, the Blazhko effect. We attempt to summarize the highest impact RR Lyrae results based on or inspired by the data of the Kepler space telescope both from the nominal and the K2 missions. Besides the three most intriguing topics, the period doubling, the low-amplitude modes, and the Blazhko effect, we also discuss the challenges of Kepler photometry that played a crucial role in the results. The secrets of these amazing variables, uncovered by Kepler, keep the theoretical, ground-based and space-based research inspired in the post-Kepler era, since light variation of RR Lyrae stars is still not completely understood.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا