ترغب بنشر مسار تعليمي؟ اضغط هنا

A Cochain Level Proof of Adem Relations in the Mod 2 Steenrod Algebra

89   0   0.0 ( 0 )
 نشر من قبل Anibal M. Medina-Mardones
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In 1947, N.E. Steenrod defined the Steenrod Squares, which are mod 2 cohomology operations, using explicit cochain formulae for cup-i products of cocycles. He later recast the construction in more general homological terms, using group homology and acyclic model methods, rather than explicit cochain formulae, to define mod p operations for all primes p. Steenrods student J. Adem applied the homological point of view to prove fundamental relations, known as the Adem relations, in the algebra of cohomology operations generated by the Steenrod operations. In this paper we give a proof of the mod 2 Adem relations at the cochain level. Specifically, given a mod 2 cocycle, we produce explicit cochain formulae whose coboundaries are the Adem relations among compositions of Steenrod Squares applied to the cocycle, using Steenrods original cochain definition of the Square operations.

قيم البحث

اقرأ أيضاً

Steenrod defined in 1947 the Steenrod squares on the mod 2 cohomology of spaces using explicit cochain formulae for the cup-$i$ products; a family of coherent homotopies derived from the broken symmetry of Alexander-Whitneys chain approximation to th e diagonal. He later defined his homonymous operations for all primes using the homology of symmetric groups. This approach enhanced the conceptual understanding of the operations and allowed for many advances, but lacked the concreteness of their definition at the even prime. In recent years, thanks to the development of new applications of cohomology, having definitions of Steenrod operations that can be effectively computed in specific examples has become a key issue. This article provides such definitions at all primes using the operadic viewpoint of May, and defines multioperations that generalize the cup-$i$ products of Steenrod on the simplicial and cubical cochains of spaces.
The commutative differential graded algebra $A_{mathrm{PL}}(X)$ of polynomial forms on a simplicial set $X$ is a crucial tool in rational homotopy theory. In this note, we construct an integral version $A^{mathcal{I}}(X)$ of $A_{mathrm{PL}}(X)$. Our approach uses diagrams of chain complexes indexed by the category of finite sets and injections $mathcal{I}$ to model $E_{infty}$ differential graded algebras by strictly commutative objects, called commutative $mathcal{I}$-dgas. We define a functor $A^{mathcal{I}}$ from simplicial sets to commutative $mathcal{I}$-dgas and show that it is a commutative lift of the usual cochain algebra functor. In particular, it gives rise to a new construction of the $E_{infty}$ dga of cochains. The functor $A^{mathcal{I}}$ shares many properties of $A_{mathrm{PL}}$, and can be viewed as a generalization of $A_{mathrm{PL}}$ that works over arbitrary commutative ground rings. Working over the integers, a theorem by Mandell implies that $A^{mathcal{I}}(X)$ determines the homotopy type of $X$ when $X$ is a nilpotent space of finite type.
142 - Daniel C. Isaksen 2020
We study the Mahowald operator $M = langle g_2,h_0^3, - rangle$ in the cohomology of the Steenrod algebra. We show that the operator interacts well with the cohomology of $A(2)$, in both the classical and $mathbb{C}$-motivic contexts. This generalizes previous work of Margolis, Priddy, and Tangora.
We compute the $C_p$-equivariant dual Steenrod algebras associated to the constant Mackey functors $underline{mathbb{F}}_p$ and $underline{mathbb{Z}}_{(p)}$, as $underline{mathbb{Z}}_{(p)}$-modules. The $C_p$-spectrum $underline{mathbb{F}}_p otimes u nderline{mathbb{F}}_p$ is not a direct sum of $RO(C_p)$-graded suspensions of $underline{mathbb{F}}_p$ when $p$ is odd, in contrast with the classical and $C_2$-equivariant dual Steenrod algebras.
126 - Andrew Baker , Tilman Bauer 2019
The Joker is an important finite cyclic module over the mod-$2$ Steenrod algebra $mathcal A$. We show that the Joker, its first two iterated Steenrod doubles, and their linear duals are realizable by spaces of as low a dimension as the instability co ndition of modules over the Steenrod algebra permits. This continues and concludes prior work by the first author and yields a complete characterization of whi
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا