ترغب بنشر مسار تعليمي؟ اضغط هنا

Regularity of Fluxes in Nonlinear Hyperbolic Balance Laws

91   0   0.0 ( 0 )
 نشر من قبل Jiequan Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper addresses the issue of the formulation of weak solutions to systems of nonlinear hyperbolic conservation laws as integral balance laws. The basic idea is that the meaningful objects are the fluxes, evaluated across domain boundaries over time intervals. The fundamental result in this treatment is the regularity of the flux trace in the multi-dimensional setting. It implies that a weak solution indeed satisfies the balance law. In fact, it is shown that the flux is Lipschitz continuous with respect to suitable perturbations of the boundary.

قيم البحث

اقرأ أيضاً

We introduce a formulation of the initial and boundary value problem for nonlinear hyperbolic conservation laws posed on a differential manifold endowed with a volume form, possibly with a boundary; in particular, this includes the important case of Lorentzian manifolds. Only limited regularity is assumed on the geometry of the manifold. For this problem, we establish the existence and uniqueness of an L1 semi-group of weak solutions satisfying suitable entropy and boundary conditions.
In this paper we study some key effects of a discontinuous forcing term in a fourth order wave equation on a bounded domain, modeling the adhesion of an elastic beam with a substrate through an elastic-breakable interaction. By using a spectral dec omposition method we show that the main effects induced by the nonlinearity at the transition from attached to detached states can be traced in a loss of regularity of the solution and in a migration of the total energy through the scales.
We consider nonlinear reaction systems satisfying mass-action kinetics with slow and fast reactions. It is known that the fast-reaction-rate limit can be described by an ODE with Lagrange multipliers and a set of nonlinear constraints that ask the fa st reactions to be in equilibrium. Our aim is to study the limiting gradient structure which is available if the reaction system satisfies the detailed-balance condition. The gradient structure on the set of concentration vectors is given in terms of the relative Boltzmann entropy and a cosh-type dissipation potential. We show that a limiting or effective gradient structure can be rigorously derived via EDP convergence, i.e. convergence in the sense of the Energy-Dissipation Principle for gradient flows. In general, the effective entropy will no longer be of Boltzmann type and the reactions will no longer satisfy mass-action kinetics.
This paper addresses the three concepts of textit{ consistency, stability and convergence } in the context of compact finite volume schemes for systems of nonlinear hyperbolic conservation laws. The treatment utilizes the framework of balance laws. S uch laws express the relevant physical conservation laws in the presence of discontinuities. Finite volume approximations employ this viewpoint, and the present paper can be regarded as being in this category. It is first shown that under very mild conditions a weak solution is indeed a solution to the balance law. The schemes considered here allow the computation of several quantities per mesh cell (e.g., slopes) and the notion of consistency must be extended to this framework. Then a suitable convergence theorem is established, generalizing the classical convergence theorem of Lax and Wendroff. Finally, the limit functions are shown to be entropy solutions by using a notion of Godunov compatibility, which serves as a substitute to the entropy condition.
Generalizing results by Bryant and Griffiths [Duke Math. J., 1995, V.78, 531-676], we completely describe local conservation laws of second-order (1+1)-dimensional evolution equations up to contact equivalence. The possible dimensions of spaces of co nservation laws prove to be 0, 1, 2 and infinity. The canonical forms of equations with respect to contact equivalence are found for all nonzero dimensions of spaces of conservation laws.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا