ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Comprehensive Data Set of Solar Filaments of 100 yr Interval. I

80   0   0.0 ( 0 )
 نشر من قبل Xiao Yang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Filaments are very common physical phenomena on the Sun and are often taken as important proxies of solar magnetic activities. The study of filaments has become a hot topic in the space weather research. For a more comprehensive understanding of filaments, especially for an understanding of solar activities of multiple solar cycles, it is necessary to perform a combined multifeature analysis by constructing a data set of multiple solar cycle data. To achieve this goal, we constructed a centennial data set that covers the H$alpha$ data from five observatories around the world. During the data set construction, we encountered varieties of problems, such as data fusion, accurate determination of the solar edge, classifying data by quality, dynamic threshold, and so on, which arose mainly due to multiple sources and a large time span of data. But fortunately, these problems were well solved. The data set includes seven types of data products and eight types of feature parameters with which we can implement the functions of data searching and statistical analyses. It has the characteristics of better continuity and highly complementary to space observation data, especially in the wavelengths not covered by space observations, and covers many solar cycles (including more than 60 yr of high-cadence data). We expect that this new comprehensive data set as well as the tools will help researchers to significantly speed up their search for features or events of interest, for either statistical or case study purposes, and possibly help them get a better and more comprehensive understanding of solar filament mechanisms.

قيم البحث

اقرأ أيضاً

We present time-of-arrival (TOA) measurements and timing models of 47 millisecond pulsars (MSPs) observed from 2004 to 2017 at the Arecibo Observatory and the Green Bank Telescope by the North American Nanohertz Observatory for Gravitational Waves (N ANOGrav). The observing cadence was three to four weeks for most pulsars over most of this time span, with weekly observations of six sources. These data were collected for use in low-frequency gravitational wave searches and for other astrophysical purposes. We detail our observational methods and present a set of TOA measurements, based on narrowband analysis, in which many TOAs are calculated within narrow radio-frequency bands for data collected simultaneously across a wide bandwidth. A separate set of wideband TOAs will be presented in a companion paper. We detail a number of methodological changes compared to our previous work which yield a cleaner and more uniformly processed data set. Our timing models include several new astrometric and binary pulsar measurements, including previously unpublished values for the parallaxes of PSRs J1832-0836 and J2322+2057, the secular derivatives of the projected semi-major orbital axes of PSRs J0613-0200 and J2229+2643, and the first detection of the Shapiro delay in PSR J2145-0750. We report detectable levels of red noise in the time series for 14 pulsars. As a check on timing model reliability, we investigate the stability of astrometric parameters across data sets of different lengths. We report flux density measurements for all pulsars observed. Searches for stochastic and continuous gravitational waves using these data will be subjects of forthcoming publications.
Context: Asteroseismology has entered a new era with the advent of the NASA Kepler mission. Long and continuous photometric observations of unprecedented quality are now available which have stimulated the development of a number of suites of innovat ive analysis tools. Aims: The power spectra of solar-like oscillations are an inexhaustible source of information on stellar structure and evolution. Robust methods are hence needed in order to infer both individual oscillation mode parameters and parameters describing non-resonant features, thus making a seismic interpretation possible. Methods: We present a comprehensive guide to the implementation of a Bayesian peak-bagging tool that employs a Markov chain Monte Carlo (MCMC). Besides making it possible to incorporate relevant prior information through Bayes theorem, this tool also allows one to obtain the marginal probability density function for each of the fitted parameters. We apply this tool to a couple of recent asteroseismic data sets, namely, to CoRoT observations of HD 49933 and to ground-based observations made during a campaign devoted to Procyon. Results: The developed method performs remarkably well at constraining not only in the traditional case of extracting oscillation frequencies, but also when pushing the limit where traditional methods have difficulties. Moreover it provides an rigorous way of comparing competing models, such as the ridge identifications, against the asteroseismic data.
Many observational records critically rely on our ability to merge different (and not necessarily overlapping) observations into a single composite. We provide a novel and fully-traceable approach for doing so, which relies on a multi-scale maximum l ikelihood estimator. This approach overcomes the problem of data gaps in a natural way and uses data-driven estimates of the uncertainties. We apply it to the total solar irradiance (TSI) composite, which is currently being revised and is critical to our understanding of solar radiative forcing. While the final composite is pending decisions on what corrections to apply to the original observations, we find that the new composite is in closest agreement with the PMOD composite and the NRLTSI2 model. In addition, we evaluate long-term uncertainties in the TSI, which reveal a 1/f scaling
We have conducted a novel search of most of the southern sky for nearby red dwarfs having low proper motions, with specific emphasis on those with proper motion < 0.18 arcsec yr-1, the lower cutoff of Luytens classic proper motion catalog. We used a tightly constrained search of the SuperCOSMOS database and a suite of photometric distance relations for photographic BRI and 2MASS JHKs magnitudes to estimate distances to more than fourteen million red dwarf candidates. Here we discuss 29 stars in 26 systems estimated to be within 25 parsecs, all of which have pm < 0.18 arcsec yr-1, which we have investigated using milliarcsecond astrometry, VRI photometry, and low-resolution spectroscopy. In total, we present the first parallaxes of 20 star systems, nine of which are within 25 parsecs. We have additionally identified eight young M dwarfs, of which two are new members of the nearby young moving groups, and 72 new giants, including two new carbon stars. We also present the entire catalog of 1215 sources we have identified by this means.
We homogeneously reanalyse $124$ transit light curves for the WASP-4 b hot Jupiter. This set involved new observations secured in 2019 and nearly all observations mentioned in the literature, including high-accuracy GEMINI/GMOS transmission spectrosc opy of 2011-2014 and TESS observations of 2018. The analysis confirmed a nonlinear TTV trend with $P/|dot P|sim (17-30)$ Myr (1-sigma range), implying only half of the initial decay rate estimation. The trend significance is at least $3.4$-sigma in the agressively conservative treatment. Possible radial acceleration due to unseen companions is not revealed in Doppler data covering seven years 2007-2014, and radial acceleration of $-15$ m s$^{-1}$yr$^{-1}$ reported in a recent preprint by another team is not confirmed. If present, it is a very nonlinear RV variation. Assuming that the entire TTV is tidal in nature, the tidal quality factor $Q_starsim (4.5-8.5)cdot 10^4$ does not reveal a convincing disagreement with available theory predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا