ﻻ يوجد ملخص باللغة العربية
Using a transport model that includes a first-order chiral phase transition between the partonic and the hadronic matter, we study the development of density fluctuations in the matter produced in heavy ion collisions as it undergoes the phase transition, and their time evolution in later hadronic stage of the collisions. Using the coalescence model to describe the production of deuterons and tritons from nucleons at the kinetic freeze out, we find that the yield ratio $ N_text{t}N_text{p}/ N_text{d}^2$, where $N_text{p}$, $N_text{d}$, and $N_text{t}$ are, respectively, the proton, deuteron, and triton numbers, is enhanced if the evolution trajectory of the produced matter in the QCD phase diagram passes through the spinodal region of a first-order chiral phase transition.
The beam energy dependence of the elliptic flow,$v_2$, is studied in mid-central Au+Au collisions in the energy range of $3leq sqrt{s_{NN}} leq 30$ GeV within the microscopic transport model JAM. The results of three different modes of JAM are compar
In this proceeding, we review our recent work using deep convolutional neural network (CNN) to identify the nature of the QCD transition in a hybrid modeling of heavy-ion collisions. Within this hybrid model, a viscous hydrodynamic model is coupled w
Following the idea of nucleon clustering and light-nuclei production in relativistic heavy-ion collisions close to the QCD critical-end point, we address the quantum effects affecting the interaction of several nucleons at finite temperature. For thi
We present an introductory review of the early time dynamics of high-energy heavy-ion collisions and the kinetics of high temperature QCD. The equilibration mechanisms in the quark-gluon plasma uniquely reflect the non-abelian and ultra-relativistic
We present an update of the event generator based on the three-fluid dynamics (3FD), complemented by Ultra-relativistic Quantum Molecular Dynamics (UrQMD) for the late stage of the nuclear collision~-- the three-fluid Hydrodynamics-based Event Simula