ﻻ يوجد ملخص باللغة العربية
Despite its groundbreaking success in Go and computer games, Monte Carlo Tree Search (MCTS) is computationally expensive as it requires a substantial number of rollouts to construct the search tree, which calls for effective parallelization. However, how to design effective parallel MCTS algorithms has not been systematically studied and remains poorly understood. In this paper, we seek to lay its first theoretical foundation, by examining the potential performance loss caused by parallelization when achieving a desired speedup. In particular, we discover the necessary conditions of achieving a desirable parallelization performance, and highlight two of their practical benefits. First, by examining whether existing parallel MCTS algorithms satisfy these conditions, we identify key design principles that should be inherited by future algorithms, for example tracking the unobserved samples (used in WU-UCT (Liu et al., 2020)). We theoretically establish this essential design facilitates $mathcal{O} ( ln n + M / sqrt{ln n} )$ cumulative regret when the maximum tree depth is 2, where $n$ is the number of rollouts and $M$ is the number of workers. A regret of this form is highly desirable, as compared to $mathcal{O} ( ln n )$ regret incurred by a sequential counterpart, its excess part approaches zero as $n$ increases. Second, and more importantly, we demonstrate how the proposed necessary conditions can be adopted to design more effective parallel MCTS algorithms. To illustrate this, we propose a new parallel MCTS algorithm, called BU-UCT, by following our theoretical guidelines. The newly proposed algorithm, albeit preliminary, out-performs four competitive baselines on 11 out of 15 Atari games. We hope our theoretical results could inspire future work of more effective parallel MCTS.
Monte Carlo Tree Search (MCTS) has proven to be capable of solving challenging tasks in domains such as Go, chess and Atari. Previous research has developed parall
Standard planners for sequential decision making (including Monte Carlo planning, tree search, dynamic programming, etc.) are constrained by an implicit sequential planning assumption: The order in which a plan is constructed is the same in which it
One challenging and essential task in biochemistry is the generation of novel molecules with desired properties. Novel molecule generation remains a challenge since the molecule space is difficult to navigate through, and the generated molecules shou
Active Reinforcement Learning (ARL) is a twist on RL where the agent observes reward information only if it pays a cost. This subtle change makes exploration substantially more challenging. Powerful principles in RL like optimism, Thompson sampling,
The combination of Monte-Carlo tree search (MCTS) with deep reinforcement learning has led to significant advances in artificial intelligence. However, AlphaZero, the current state-of-the-art MCTS algorithm, still relies on handcrafted heuristics tha