ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersion Limited versus Power Limited Terahertz Transmission Links Using Solid Core Subwavelength Dielectric Fibers

165   0   0.0 ( 0 )
 نشر من قبل Maksim Skorobogatiy
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we present an in-depth experimental and numerical study of the short-range THz communications links that use subwavelength dielectric fibers for information transmission and define main challenges and tradeoffs in the link implementation. Particularly, we use air or foam-cladded polypropylene-core subwavelength dielectric THz fibers of various diameters (0.57-1.75 mm) to study link performance as a function of the link length of up to ~10 m, and data bitrates of up to 6 Gbps at the carrier frequency of 128 GHz (2.34 mm wavelength). We find that depending on the fiber diameter, the quality of the transmitted signal is mostly limited either by the modal propagation loss or by the fiber velocity dispersion (GVD). An error-free transmission over 10 meters is achieved for the bit rate of 4 Gbps using the fiber of smaller 0.57 mm diameter. Furthermore, since the fields of subwavelength fibers are weakly confined and extend deep into the air cladding, we study the modal field extent outside of the fiber core, as well as fiber bending loss. Finally, the power budget of the rod-in-air subwavelength THz fiber-based links is compared to that of free space communication links and we demonstrate that fiber links offer an excellent solution for various short-range applications.

قيم البحث

اقرأ أيضاً

Determined polarization state of light is required in nonlinear optics applications related to ultrashort and single-cycle light pulse generation. Such short time scales require up to full octave of spectral width of light. Fiber-based, pulse-preserv ing and linearly polarized supercontinuum can meet these requirements. We report on the development - from linear simulations of the fiber structure, through fabrication of physical fibers to their versatile characterization - of polarization maintaining, highly nonlinear photonic crystal fibers, intended for femtosecond pumping at a wavelength of 1560 nm. Full octave of linearly polarized light around this wavelength would enable to cover amplification bandwidths of the three major fiber amplifiers from ytterbium doped systems up to thulium and holmium doped fiber amplifiers, with a coherent, linearly polarized seed signal. At the same time, an all-normal chromatic dispersion profile over an entire transmission window, and small dispersion of nonlinearity in the developed fibers, would facilitate use of commercially available femtosecond fiber lasers as pump sources for the developed fibers.
Electromagnetic response of dielectric resonators with high refractive index is governed by optically induced electric and magnetic Mie resonances facilitating confinement of light with the amplitude enhancement. However, strong subwavelength trappin g of light was associated traditionally only with plasmonic or epsilon-near-zero structures which however suffer from losses. Recently, an alternative localization mechanism was proposed to trap light in individual subwavelength optical resonators with a high quality factor in the regime of a supercavity mode. Here, we present the experimental observation of the supercavity modes in subwavelength ceramic resonators in the radiofrequency range. We demonstrate experimentally that the regime of supercavity mode can be achieved via precise tuning of the resonators dimensions resulting in a huge growth of the quality factor reaching the experimental values up to 1.25x10^4, being limited only by material losses in dielectrics. We reveal that the supercavity modes can be excited efficiently by both near- and far-fields by means of dipole sources and plane waves, respectively. In both the cases, the supercavity mode manifests itself clearly via characteristic peculiarities of the Fano resonance and radiation patterns. Our work paves the way for future compact practical devices in photonics and radiophysics.
Taming the Terahertz waves (100 GHz-10 THz) is considered the next frontier in wireless communications. While components for the ultra-high bandwidth Terahertz wireless communications were in rapid development over the past several years, however, th eir commercial availability is still lacking. Nevertheless, as we demonstrate in this paper, due to recent advances in the microwave and infrared photonics hardware, it is now possible to assemble high performance hybrid THz communication systems for real-life applications. As an example, in this work, we present design and performance evaluation of the photonics-based Terahertz wireless communication system for the transmission of uncompressed 4K video feed that is built using all commercially available system components. In particular, two independent tunable lasers operating in the infrared C-band are used as a source for generating the Terahertz carrier wave using frequency difference generation in a photomixer. One of the IR laser beams carries the data which is intensity modulated using the LiNbO3 electro-optic modulator. A zero bias Schottky detector is used as the detector and demodulator of the data stream followed by the high-gain and low-noise pre-amplifier. The Terahertz carrier frequency is fixed at 138 GHz and the system is characterized by measuring the bit error rate for the pseudo random bit sequences at 5.5 Gbps. By optimizing the link geometry and decision parameters, an error-free (BER<10-10) transmission at a link distance of 1m is achieved. Finally, we detail integration of a professional 4K camera into the THz communication link, and demonstrate live streaming of the uncompressed HD and 4K video followed by analysis of the link quality.
The capacity of optical communication channels can be increased by space division multiplexing in structured optical fibers. Radial core optical fibers allows for the propagation of twisted light--eigenmodes of orbital angular momentum, which have at tracted considerable attention for high-dimensional quantum information. Here we study the generation of entangled photons that are tailor-made for coupling into ring core optical fibers. We show that the coupling of photon pairs produced by parametric down-conversion can be increased by close to a factor of three by pumping the non-linear crystal with a perfect vortex mode with orbital angular momentum $ell$, rather than a gaussian mode. Moreover, the two-photon orbital angular momentum spectrum has a nearly constant shape. This provides an interesting scenario for quantum state engineering, as pumping the crystal with a superposition of perfect vortex modes can be used in conjunction with the mode filtering properties of the ring core fiber to produce simple and interesting quantum states.
Near-field imaging with terahertz (THz) waves is emerging as a powerful technique for fundamental research in photonics and across physical and life sciences. Spatial resolution beyond the diffraction limit can be achieved by collecting THz waves fro m an object through a small aperture placed in the near-field. However, light transmission through a sub-wavelength size aperture is fundamentally limited by the wave nature of light. Here, we conceive a novel architecture that exploits inherently strong evanescent THz field arising within the aperture to mitigate the problem of vanishing transmission. The sub-wavelength aperture is originally coupled to asymmetric electrodes, which activate the thermo-electric THz detection mechanism in a transistor channel made of flakes of black-phosphorus or InAs nanowires. The proposed novel THz near-field probes enable room-temperature sub-wavelength resolution coherent imaging with a 3.4 THz quantum cascade laser, paving the way to compact and versatile THz imaging systems and promising to bridge the gap in spatial resolution from the nanoscale to the diffraction limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا