ﻻ يوجد ملخص باللغة العربية
Electromagnetic response of dielectric resonators with high refractive index is governed by optically induced electric and magnetic Mie resonances facilitating confinement of light with the amplitude enhancement. However, strong subwavelength trapping of light was associated traditionally only with plasmonic or epsilon-near-zero structures which however suffer from losses. Recently, an alternative localization mechanism was proposed to trap light in individual subwavelength optical resonators with a high quality factor in the regime of a supercavity mode. Here, we present the experimental observation of the supercavity modes in subwavelength ceramic resonators in the radiofrequency range. We demonstrate experimentally that the regime of supercavity mode can be achieved via precise tuning of the resonators dimensions resulting in a huge growth of the quality factor reaching the experimental values up to 1.25x10^4, being limited only by material losses in dielectrics. We reveal that the supercavity modes can be excited efficiently by both near- and far-fields by means of dipole sources and plane waves, respectively. In both the cases, the supercavity mode manifests itself clearly via characteristic peculiarities of the Fano resonance and radiation patterns. Our work paves the way for future compact practical devices in photonics and radiophysics.
In this work, we present an in-depth experimental and numerical study of the short-range THz communications links that use subwavelength dielectric fibers for information transmission and define main challenges and tradeoffs in the link implementatio
Electromagnetic scattering on subwavelength structures keeps attracting attention owing to abroad range of possible applications, where this phenomenon is in use. Fundamental limits of scattering cross-section, being well understood in spherical geom
Topological valley photonics has emerged as a new frontier in photonics with many promising applications. Previous valley boundary transport relies on kink states at internal boundaries between two topologically distinct domains. However, recent stud
This paper proposes a novel technique for the design of miniaturized waveguide filters based on locally resonant metamaterials (LRMs). We implement ultra-small metamaterial filters (Meta-filters) by exploiting a subwavelength (sub-lambda guiding mech
Systems with low mechanical dissipation are extensively used in precision measurements such as gravitational wave detection, atomic force microscopy and quantum control of mechanical oscillators via opto- and electromechanics. The mechanical quality